• Title/Summary/Keyword: energy dissipation performance

Search Result 739, Processing Time 0.026 seconds

Failure Behavior of Non-seismic RC Column with aspect ratio of 4.0 (형상비 4.0인 비내진 철근콘크리트 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.59-66
    • /
    • 2020
  • Two octagonal RC bridge columns of small scale model were tested under cyclic lateral load with constant axial load. One in two specimens was solid cross section, the other was hollow cross section. The volumetric ratio of transverse spiral hoop of all specimens is 0.00206. The columns showed flexure-shear failure. Failure behavior and seismic performance were investigated. The test results showed that the structural performance of the hollow specimen such as initial crack pattern, initial stiffness, and energy dissipation performance was comparable to that of the solid specimen, but the lateral strength, ultimate displacement, energy dissipation performance of hollow specimen noticeably decreased after drift ratio of 3%.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.

Seismic performance of Bujian Puzuo considering scale ratio and vertical load effects

  • Yong-Hui Jiang;Jun-Xiao He;Lei Zhu;Lin-Lin Xie;Shuo Fang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigated the influence of scale ratio and vertical load on the seismic performance of Puzuo joints in traditional Chinese timber structures. Three low-cyclic reversed loading tests were conducted on three scaled specimens of Bujian Puzuo in Yingxian Wooden Pagoda. This study focused on the deformation patterns and analyzed seismic performance under varying scale ratios and vertical loads. The results indicated that the slip and rotational deformations of Bujian Puzuo were the primary deformations. The scale of the specimen did not affect the layer where the maximum interlayer slip occurred, but it did decrease the proportion of slip deformation. Conversely, the reducing vertical load caused the layer with the maximum slippage and the position of the damaged Dou components to shift upward, and the proportion of slip deformation increased. When the vertical load was decreased by 3.7 times, the maximum horizontal bearing capacity under positive and negative loadings, initial stiffness, and energy dissipation of the specimen decreased by approximately 60%, 58.79%, 69.62%, and 57.93%, respectively. The horizontal bearing capacity under positive loading and energy dissipation of the specimen increased by 35.63% and 131.54%, when the specimen scale was doubled and the vertical load was increased by 15 times.

Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device

  • Shao, Xiaoyun;van de Lindt, John;Bahmani, Pouria;Pang, Weichiang;Ziaei, Ershad;Symans, Michael;Tian, Jingjing;Dao, Thang
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1031-1054
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) of a stacked wood shear wall retrofitted with a rate-dependent seismic energy dissipation device (viscous damper) was conducted at the newly constructed Structural Engineering Laboratory at the University of Alabama. This paper describes the implementation process of the RTHS focusing on the controller scheme development. An incremental approach was adopted starting from a controller for the conventional slow pseudodynamic hybrid simulation and evolving to the one applicable for RTHS. Both benchmark-scale and full-scale tests are discussed to provide a roadmap for future RTHS implementation at different laboratories and/or on different structural systems. The developed RTHS controller was applied to study the effect of a rate-dependent energy dissipation device on the seismic performance of a multi-story wood shear wall system. The test specimen, setup, program and results are presented with emphasis given to inter-story drift response. At 100% DBE the RTHS showed that the multi-story shear wall with the damper had 32% less inter-story drift and was noticeably less damaged than its un-damped specimen counterpart.

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

A new metallic energy dissipation system for steel frame based on negative Poisson's ratio structures

  • Milad Masoodi;Ahmad Ganjali;Hamidreza Irani;Aboozar Mirzakhani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.93-102
    • /
    • 2024
  • Using negative Poisson's ratio materials, an innovative metallic-yielding damper is introduced for the first time in this study. Through the use of ABAQUS commercial software, a nonlinear finite element analysis is conducted to determine the performance of the proposed system. Mild steel plates with elliptical holes are used for these types of dampers, which dissipate energy through an inelastic deformation of the constitutive material. To assess the capability of the proposed damper, nonlinear quasi-static finite element analyses have been conducted on the damper with a variety of geometric parameters. According to the results, the proposed system is ductile and has a high capacity to dissipate energy. The proposed auxetic damper has a specific energy absorption of 910.8 J/kg and a ductility of 33.6. Therefore, this damper can dissipate a large amount of earthquake input energy without buckling by increasing the buckling load of the brace with its ductile behavior. In addition, it was found that by incorporating auxetic dampers in the steel frame, the frame was made harder, stronger, and ductile and its energy absorption increased by 300%.

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.