• Title/Summary/Keyword: energy dissipating

Search Result 145, Processing Time 0.022 seconds

Seismic Behavior of Bridges with Sacrificial Energy-dissipating Devices (회생개념의 에너지소산장치의 적용에 따른 교량의 내진성능평가)

  • 김상효;이상우;김영훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.393-400
    • /
    • 2003
  • Various types of dampers are widely adopted to reduce the seismic damages in bridges. However, dampers may be the improper solution especially in moderate seismic regions because dampers are costly for installation and require constant maintenance during life cycle. In this study, energy-dissipating sacrificial device is proposed, which sacrifices easily substitutable bridge members and dissipates the excessive energy during seismic excitations. In turns, the inelastic behavior of sacrificial members reduces the input energy of the major members, such as piers in bridges, and may prevent the major members from serious malfunction. A simplified mechanical model is developed to represent the behavior of sacrificial devices installed in a bridge. The hysteresis energy of piers is analyzed to certify performance of device under seismic loads applied to this mechanical model. The results from this study show that the proposed sacrificial energy-dissipating device can decrease excessive hysteresis energy and reduce the damage of piers under seismic excitation. Therefore, economical enhancement of the seismic performance of bridges may be possible by employing the proposed sacrificial energy-dissipating devices.

  • PDF

Seismic behavior of special moment-resisting frames with energy dissipating devices under near source ground motions

  • Bayat, Mahmoud;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.533-557
    • /
    • 2014
  • In this study, the performances of the SMRF building equipped with energy dissipating devices are studied. Three types of these structures with different heights are considered. The Added Damping and Stiffness (ADAS) devices are used as energy dissipating devices in these structures. The behavior of these structures with ADAS devices subjected to near source ground motions are investigated. Three SMRF buildings with five, ten and fifteen-story, with ADAS devices were chosen. The nonlinear time history analysis was used by applying the near source ground motions with PERFORM 3D.V4 and conclusions are drawn upon an energy criterion. The effect of PGA variation and height of the frames are also considered based on the energy criterion.

An Experimental Study on the Hydraulic Performance of Wave Dissipating Quay Walls (소파안벽의 수리학적 성능에 관한 실험적 연구)

  • 김인철;이태환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2000
  • Recently, wave dissipating structures with porosity are widely used to improve habor tranquility and to reduce the wave overtopping rate. In this study, hydraulic model tests were performed to examine hydraulic efficiency of slit caissons, igloo blocks, and hollow blocks. The model tests showed that slit caissons were the most effective in dissipating wave energy under moderate wave conditions. Slit caissons and igloo blocks showed no significant difference in reducing wave overtopping rate. Hallow blocks are less effective in reducing wave overtopping rate than slit caissons and igloo blocks lU1der higher wave energy conditions.

  • PDF

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

A Study on the Seismic Performance of Energy-Dissipating Sacrificial Devices for Steel Plate Ginder Bridges (강합성 거더교에 적용된 희생부재형 에너지소산장치의 내진성능에 관한 연구)

  • Cho, Kwang-Il;Gwak, Pil-Bong;Mha, Ho-Seong;Kim, Sang-Hyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.87-96
    • /
    • 2007
  • A new Energy-Dissipating Sacrificial Device (EDSD) is developed for steel plate girders, which can effectively dissipate the energy stored in the structures during seismic actions. To verify the performance of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation. The full scale model tests are conducted to certify the performance of the EDSD when it is applied on existing bridges. Using the improved hysteretic model of the sacrificial member, the seismic analysis for an example bridge is performed. The results show that the proposed EDSD under seismic excitations can significantly decrease the energy stored in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy-dissipating sacrificial device.

Predicted Cooling Performance of Single Finned Heat Dissipating Block for Economic Assessment of LED Module Markings in Standards (LED 모듈 표준 표시사항의 경제적인 평가를 위한 단일 핀 방열 블록의 냉각성능 예측)

  • Huh, Young-Joon;Song, Myung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.81-91
    • /
    • 2015
  • LED has received intensive research attention due to its long life, high efficacy, fast response and wide colour availability, and has secured extensive application areas. However, LED chips within the modules convert only fraction of electric energy into light, and majority of supplied energy needs to be dissipated as heat, which challenges in the performance and life of the LED modules. IEC 62717 specifies the performance requirements for LED modules together with the test methods and conditions. The present study examined the influence of different design parameters on performance temperature through series of experiments and numerical simulations. The economic means to change the module performance temperature during the measurement of mandatory markings were suggested based on predicted cooling performances.

Simplified Estimation Method for Collective Uncertainty-Propagations of Hysteretic Energy Dissipating Device's Properties

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1508-1524
    • /
    • 2018
  • Hysteretic energy dissipating devices (HEDDs) have been increasingly applied to building construction to improve the seismic performance. The seismic responses of such damped structures are significantly affected by HEDD's structural properties. An accurate investigation on the propagation of HEDD's structural properties is required for reasonable evaluation of the seismic performance of a structure. This study aims to develop simplified methods that can estimate the collective uncertainty-propagation to the seismic response of damped structures employing HEDDs. To achieve this, three- and six-story steel moment-resisting frames were selected and the propagations of the individual HEDD's property-uncertainties were evaluated when they are subjected to various levels of seismic demand. Based on the result of individual uncertainty-propagations, a simplified method is proposed to evaluate the variation of seismic response collectively propagated by HEDD's property-uncertainties and is verified by comparing with the exact collective uncertainty-propagation calculated using the Monte Carlo simulation method. The proposed method, called as a modified SRSS method in this study, is established from a conventional square root of the sum of the squares (SRSS) method with the relative contributions of the individual HEDD's property-uncertainty propagations. This study shows that the modified SRSS method provides a better estimation than the conventional SRSS method and can significantly reduce computational time with reasonable accuracy compared with the Monte Carlo simulation method.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

Rocking Behavior of Clamped Shape Metallic Damper (꺽쇠형 강재 댐퍼의 록킹 거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.