• Title/Summary/Keyword: energy consumption capacity

Search Result 369, Processing Time 0.029 seconds

Performance Analysis Based on RAU Selection and Cooperation in Distributed Antenna Systems

  • Wang, Gang;Meng, Chao;Heng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5898-5916
    • /
    • 2018
  • In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

Study on Analysis for Power Consumption and Charge/Discharge Effect with BESS in AC High-Speed Electric Railway System (교류 고속철도계통에서 BESS의 도입을 위한 전력소비 및 충·방전효과 분석에 관한 연구)

  • Jeon, Yong-Joo;Kang, Byoung-Wook;Chai, Hui-Seok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.20-27
    • /
    • 2014
  • The power consumption pattern of high-speed railway has rarely during night time. But, during service time, the power is consumed irregularly related to train operation. Especially certain unusual about 1-2 days of service time interval to indicate the power consumption is rapidly growing phenomenon, which causes the capacity of the power contract is the annual electricity bill to rise rapidly as the cause. Normally, amount of peak power consumption bill rate at railway substation is over 20% of total electrical bill. Therefore, high-speed railway substation is expected to be considerably larger savings by reducing the peak power of the default charge(demand power).

A Study on the operating of building equipment in apartment building - With reference to heating equipment and water-supply facilities - (고층 아파트의 건축설비 운용실태에 관한 연구 - 난방설비 및 급수설비를 중심으로 -)

  • 안창환
    • Journal of the Korean housing association
    • /
    • v.2 no.2
    • /
    • pp.35-40
    • /
    • 1991
  • In this study, the operation(heating) period of heat source(boiler) machineries in apartment building for periodic heat load analysis has been established by investigating their heat source machineries actural operation period, energy consumption, the capacity of heat source machineries, and their building element. Thus, the purpose of this paper is at bring up the various pre-estimate expression for energy conservatiove, efficient operation and amount of water supplied.

  • PDF

Assessment of Energy Self-sufficiency Ratio Based on Renewable Market Potentials for Unit of Local Government (기초지방자치단체별 보급 가능한 재생에너지 시장잠재량을 이용한 에너지 자립률 평가)

  • Kim, Jin-Young;Kang, Yong-Heack;Cho, Sangmin;Yun, Changyeol;Kim, Chang Ki;Kim, Ha-Yang;Lee, Seung Moon;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.137-151
    • /
    • 2019
  • This study estimated the available renewable market potential based on Levelized Cost Of Electricity and then assessed the renewable derived energy self-sufficiency for the unit of local government in South Korea. To calculate energy self-sufficiency, 1 km gridded market renewable generation and local government scale of final energy consumption data were used based on the market costs and statistics for the recent three years. The results showed that the estimated renewable market potentials were 689 TWh (Install capacity 829 GW, 128 Mtoe), which can cover 120% of power consumption. 55% of municipalities can fully replace the existing energy consumption with renewable energy generation and the surplus generation can compensate for the rest area through electricity trade. However, it was confirmed that, currently, 47% of the local governments do not fully consider all renewable energy sources such as wind, hydro and geothermal in establishing 100% renewable energy. The results of this study suggest that energy planning is decentralized, and this will greatly contribute to the establishment of power planning of local governments and close the information gap between the central government, the local governments, and the public.

Control of Refrigerating Compressor Capacity Using Inverter (인버터를 이용한 냉동용 압축기의 용량 제어)

  • Yang, H.S.;Kim, H.S.;Kim, J.H.;Kim, S.B.;Kim, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.94-101
    • /
    • 1993
  • Recently, efforts of decreasing energy consumption are continously increased and user's preference is also diversified in refrigeration and air conditioning systems. Thus, in order to satisfy these demands, high efficiency, high intelligence, and energy saving for those systems are essential. As the basic study for diverse functions and intelligence of those systems, we investigated the response characteristics through the compressor capacity control concerned with superheat and refrigeration room temperature. And, response characteristics are investigated experimentally by using micro computer based PWM inverter control method. Experimental result of the conventional on-off control method is given in order to be compared to the results of inverter control method. The results obtained through this study are summarized as follows. It is shown from the experimental results of the on-off control method that the range of temperature variation around the steady state ($-18^{\circ}C$) is very large (about $7{\sim}8^{\circ}C$) and the settling time bringing the steady state is not found. In the inverter control method, we can see that the refrigeration room temperature after reaching the setting temperature is very stable without fluctuation and a robust control for disturbance such as opening the door has been realized.

  • PDF

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Energy-Aware Routing Protocol for Mobile Ad Hoc Network (노드의 여유 에너지 기반 이동 Ad Hoc 네트워크의 라우팅 프로토콜)

  • Kwon, Soo-Kun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1108-1118
    • /
    • 2005
  • A mobile Ad Hoc network is a dynamic mobile wireless network that can be formed without the need for any pre-existing wired or wireless infrastructure. A mobile ad hoc node has limited battery capacity. Hence, Ad Hoc routing protocol ought to be energy conservative. Previous energy aware routing has limit in fairness among nodes and network wide power consumption. In this research, we propose a new routing protocol called Clustering Based Energy-Aware Routing(CBEAR) which can improve the problems. Simulation results show that the routing protocol improves fairness and network wide power consumption as well as life time of nodes.

  • PDF

The Study on the Structure and Performance of Heat Pump Calorimeter (열펌프 열량계 구조 및 성능 특성 연구)

  • Park, Seung Byung;Lee, Sang-Hyeok;Choi, Jinnil;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • The efficiency, reliability and performance of any heat pump unit can only be ascertained after it has been tested and rated. For this reason, specific facilities, equiped with testing plants are built. Heat pump calorimeter is the facilities used by most of these testing facilities in their rating and certification process. The ultimate function of calorimeters is to, control and maintain the constant standard test conditions (indoor/outdoor entering temperatures and flow rate etc) during testing period. In this study, the test standards of heat pump unit and the structure of the calorimeter are surveyed. In addition, this study analyzes the total energy consumption of a water to water heat pump calorimeter. Heat pump calorimeter consumed much energy to excute the heat pump tests. The energy consumption of the calorimeter was higher than the heat pump unit, and it was increased as the heat pump unit capacity decreased.

A Study on Life Cycle Cost Analysis of Thermal Bridge Barrier Between Window Frame and Concrete Wall (건축물의 창틀과 벽체 사이 열교방지공법의 LCC 분석)

  • Park, Cheol-Yong;Kim, Woong-Hoi;Lee, Sang-Hee;Nam, Seung-Young;Yoon, Gil-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.59-60
    • /
    • 2019
  • Thermal bridge on a building envelope causes additional heat loss which increases the heating energy consumption. As the higher building insulation performance is required, heat loss through thermal bridge becomes higher proportion among total building heating energy consumption. For the exterior insulation and finish system, thermal bridge between window frame and concrete wall should be constidered as one of main reasons of heat loss. In this study, the thermal bridge barrier between window frame and concrete wall(STAR) was proposed as the best practice for reducing thermal bridge. The STAR was confirmed that the use of thermal bridge barrier imporved the annual heat energy capacity by 35% or more and the innitial construction cost by 7.4% or less because of additional interior insulation against condensation. Finally the life cycle cost during 20 year by heating energy of a building reduced by 25% or more compared with the exist technology. This STAR thermal bridge barrier will be used as the main technology to improve the energy efficiency of building.

  • PDF