• Title/Summary/Keyword: energy circulating

Search Result 306, Processing Time 0.029 seconds

Study on Thermal Behavior and Design Method for Coil-type PHC Energy Pile (코일형 PHC 에너지파일의 열적 거동 및 설계법에 관한 연구)

  • Park, Sangwoo;Sohn, Jeong-Rak;Park, Yong-Boo;Ryu, Hyung-Kyou;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.37-51
    • /
    • 2013
  • An energy pile encases heat exchange pipes to exchange thermal energy with the surrounding ground formation by circulating working fluid through the pipes. An energy pile has many advantages in terms of economic feasibility and constructability over conventional Ground Heat Exchangers (GHEXs). In this paper, a coil-type PHC energy pile was constructed in a test bed and its thermal performance was experimentally and numerically evaluated to make a preliminary design. An in-situ thermal response test (TRT) was performed on the coil-type PHC energy pile and its results were compared with the solid cylinder source model presented by Man et al. (2010). In addition, a CFD numerical analysis using FLUNET was carried out to back-analyze the thermal conductivity of the ground formation from the Ttype PHC energy RT result. To study effects of a coil pitch of the coil-type heat exchange pipe, a thermal interference between the heat exchange pipes in PHC energy piles was parametrically studied by performing the CFD numerical analysis, then the effect of the coil pitch on thermal performance and efficiency of heat exchange were evaluated. Finally, an equivalent heat exchange efficiency factor for the coil-type PHC energy pile in comparison with a common multiple U-type PHC energy pile was obtained to facilitate a preliminary design method for the coil-type PHC energy pile by adopting the PILESIM2 program.

Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler (순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석)

  • Park, Kyoung-Il;Kim, Dong-Won;Lee, Tae-Hee;Lee, Jong-Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.692-699
    • /
    • 2013
  • In this study, isothermal (350, 375, 400, 425, 450, 500, $850^{\circ}C$) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of $375{\sim}450^{\circ}C$ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method ($0.5{\leq}X{\leq}0.9$) respectively. Mean-while, the devolatilization time ($t_{dev}$) according to particle size (d) of RPF could be expressed as $t_{dev}=10.38d^{2.88}$ at $850^{\circ}C$, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was $x{\leq}1.58d^{1.44}$.

Regulation of circulating Mg2+ concentration in rats by ATP depletion (흰쥐에서 ATP 결핍에 의한 혈중 Mg2+ 농도조절)

  • Kim, Shang-jin;Baek, Sung-soo;Shim, So-yeon;Oh, Sung-suck;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.267-274
    • /
    • 2000
  • Since intracellular free $Mg^{2+}$ ($[Mg^{2+}]_i$) appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion into circulation. Extracellualr $Mg^{2+}$ contents ($[Mg^{2+}]_o$) were measured in rat erythrocytes, the perfused heart and liver, and plasma in the anesthetized rat. Animals were injected intraperitoneally with sodium nitrite ($NaNO_2$) and plasma $Mg^{2+}$ was measured after the injection and then 10 and 20 minutes later. An increase in circulating (plasma) $Mg^{2+}$ ($[Mg^{2+}]_c$) and methemoglobin was observed in animals injected with $NaNO_2$ (30 mg/Kg). The time course of the effects demonstrated that $[Mg^{2+}]_c$ and methemoglobin continued to increase 10 minutes after the $NaNO_2$ injection. Under these conditions, there was a sustained increase in $[Mg^{2+}]_c$, but not in methemoglobin, which was inhibited by pretreatment with potassium cyanide (KCN, 4 mg/Kg), indicating that an increase in $[Mg^{2+}]_c$ was accompanied by ATP depletion. Injection of rotenone (0.9 mg/Kg) or 2,4-dinitrophenol (15 mg/Kg) also induced an increase in $[Mg^{2+}]_c$. Reduced respiration rate from 100/min to 10/min during 30 minutes also caused a time-dependent rise in $[Mg^{2+}]_c$. These increase in $[Mg^{2+}]_c$ were inhibited by pretreatment with KCN. In addition, ATP depletion by $NaNO_2$ or KCN sustainedly increased the $[Mg^{2+}]_o$ in rat erythrocytes. $Mg^{2+}$ efflux was stimulated by KCN in the perfused heart and liver, but not by $NaNO_2$. These results suggest that the activation of $Mg^{2+}$ effluxes into the circulation is directly dependent on the ATP depletion-induced increase in $[Mg^{2+}]_i$ and heart, liver and erythrocytes have a major pool of $Mg^{2+}$ that can be mobilized upon cellular energy state.

  • PDF

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

Global Trend of Cement Production and Utilization of Circular Resources

  • Lim, Chaeyeon;Jung, Euntae;Lee, Seongho;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.57-63
    • /
    • 2020
  • In this paper, we reported that the global trend of cement production and utilization as raw materials and as a fuel. As we know, cement is one of the significant materials required for the construction industry. The recent trend of rising urbanization, both the cement and construction industry played a vital role. The cement industry is a major sustainable infrastructure for the countries. Currently, China producing cement half of the world's cement production. During the year 2018, Korea producing cements nearly 57.5 million metric tons. Waste materials are used as circular resources and also having tremendous benefits for cement production. Another important use of these circular resources is fuel for the cement industry. There is a large potential benefit of the cement industry, but it's creating a severe environmental threat. The cement industry contributes to the major emissions of CO2. This leads the global warming. As per the Paris agreement, the Korean government initiated the recycling policy of waste materials and also the utilization of circular resources for the prevention of limited natural resources and also the global warming effect.

Design and Performance Test of Savonius Tidal Current Turbine with CWC (사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가)

  • Jo, Chul-Hee;Lee, Jun-Ho;Rho, Yu-Ho;Ko, Kwang-Oh;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

Gender Differences in the Body Composition, Resting Energy Expenditure, and Leptin Levels of Obese Adults

  • Shin, Ho-Jeung;Cho, Mi-Ran;Lee, Hye-Ok;Kim, Young-Sul;Choue, Ryo-Won
    • Nutritional Sciences
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • The objective of this study was to examine how circulating leptin concentrations and resting energy expenditures (REE) are related to body composition in obese adults, and to examine differences in these parameters according to gender. Twenty-three subjects, 6 males and 17 females, were recruited from patients with a body mass index (BMI) of greater than 27 at the Obesity Clinic of the K University Hospital. Anthropometric assessments and biochemical analyses were performed, and REEs were measured. In spite of having similar BMI values the plasma leptin levels of females (20.0$\pm$6.5 ng/ml) were significantly higher (p<.05) than those of males (14.2$\pm$6.1) ng/ml). In females, plasma leptin concentrations were found to be positively related to body weight. BMI, waist-hip ratio (WHR), fat mass (FM), body fat, and to the circumferences of forearm, waist and hip (p<.0001). However, in males, plasma leptin concentrations were positively related only to suprailiac thickness (p<.05). The higher plasma leptin levels in females compared to males may, at least partially. be explained by the females' higher subcutaneous fat mass. Plasma leptin concentrations appeared to reflect not only total fat mass but also regional fat distribution, especially in females. REE values of males (2254.3$\pm$256.2 kcal/day) were significantly higher (p<.01) than those of females (1799.1$\pm$454.7 kcal/day). REE values for females were positively related to body weight, BMI, lean body mass (LBM), FM, body fat, and to the circumferences of waist and hip (p<.05); however, REE values for males were (positively) related only to LBM (p<.05). REE values were not related to plasma leptin concentrations for either males or females, indicating that the plasma level of leptin might not be a predictor for REE value.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

The Effect of CBB(CaO·BaO·B2O3) Addition on the Physical Properties and Oxygen Transfer Reactivity of NiO-based Oxygen Carriers for Chemical Looping Combustion (CBB를 첨가한 NiO 산소전달입자의 물성 및 반응 특성)

  • BAEK, JEOM-IN;JO, HYUNGEUN;EOM, TAEHYOUNG;LEE, JOONGBEOM;RYU, HO-JUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.95-105
    • /
    • 2016
  • Spray-dried NiO-based oxygen carriers developed for chemical looping combustion required high calcination temperatures above $1300^{\circ}C$ to obtain high mechanical strength applicable to circulating fluidized-bed process. In this study, the effect of CBB ($CaO{\cdot}BaO{\cdot}B_2O_3$) addition, as a binder, on the physical properties and oxygen transfer reactivity of spray-dried NiO-based oxygen carriers was investigated. CBB addition resulted in several positive effects such as reduction of calcination temperature and increase in oxygen transfer capacity and porosity. However, oxygen transfer rate was considerably decreased. This was more apparent when a higher amount of CBB was added and MgO was added together. From the experimental results, it is concluded that CBB added NiO-based oxygen carriers are not suitable for chemical looping combustion and a new method to reduce calcination temperature while maintaining high oxygen transfer rate of NiO-based oxygen carriers should be found out.