• Title/Summary/Keyword: energy change ratio

Search Result 724, Processing Time 0.03 seconds

A 1:1 exercise-to-rest period ratio needed by animals to restore energy sources and replenish anti-oxidative status after exercise

  • Yeom, Ma-Young;Cho, Youn-Ok
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Successful recovery of an animal from exercise is essential, especially prior to the next exercise session. This study was conducted to find an effective exercise-to-rest period ratio for the restoration of energy sources and replenishment of anti-oxidative status in tissue after exercise. MATERIALS/METHODS: Thirty-two rats were assigned to either non-training or training exercise groups for 5 weeks. After that period, the two groups were subdivided into four smaller groups: non-exercise (NE), exercise 0.5 hour and rest 1 hour (ER0.5:1), exercise 1 hour and rest 1 hour (ER1:1), exercise 2 hours and rest 1 hour (ER2:1). RESULTS: In the training group animals and compared to the NE group, the levels of plasma glucose after the rest period were significantly high in all ER groups but highest in the ER2:1 group. Similarly, the liver glycogen level was highest in the ER2:1 group. The plasma FFA level reached the highest level in the ER2:1 group but was similarly high in the ER0.5:1 group. Liver TG level was unchanged in the ER2:1 and ER1:1 groups but was significantly high in the ER0.5:1 group. Muscle TG levels were decreased in all three ER groups. Plasma protein levels were significantly high in the ER2:1 and ER0.5:1 groups. In both training animal and non-training animals, the liver protein levels did not change significantly between the NE and ER groups, irrespective of the exercise-to-rest ratio. In the training animal group, muscle protein level was significantly low in the ER2:1 and ER0.5:1 groups. The activity levels of superoxide dismutase and catalase, as well as the malondialdehyde concentration, were not significantly different between NE and ER groups, irrespective of the exercise-to-rest period ratio. CONCLUSIONS: These results indicate that animals provided with a 0.5:1 to 1:1 exercise-to-rest period ratio can restore their muscle energy sources and recover their anti-oxidative defense system.

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Development of the IRIS Collimator for the Portable Radiation Detector and Its Performance Evaluation Using the MCNP Code (IRIS형 방사선검출기 콜리메이터 제작 및 MCNP 코드를 이용한 성능평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lee, Wanno;Choi, Sang-Do;Kim, Change-Jong;Kang, Mun Ja;Park, Sang Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • When a radiation detector is applied to the measurement of the radioactivity of high-level of radioactive materials or the rapid response to the nuclear accident, several collimators with the different inner radii should be prepared according to the level of dose rate. This makes the in-situ measurement impractical, because of the heavy weight of the collimator. In this study, an IRIS collimator was developed so as to have a function of controlling the inner radius, with the same method used in optical camera, to vary the attenuation ratio of radiation. The shutter was made to have the double tungsten layers with different phase angles to prevent the radiation from penetrating owing to the mechanical tolerance. The performance evaluation through the MCNP code was conducted by calculating the attenuation ratio according to the inner radius of the collimator. The attenuation ratio was marked on the outer scale ring of the collimator. It is expected that when a radiation detector with the IRIS collimator is used for the in-situ measurement, it can change the attenuation ratio of the incident photon to the detector without replacing the collimator.

Case Study on 12kW Building Integrated Photovoltaic System (12kW급 건물일체형 태양광발전시스템 사례분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;So, Jung-Hoon;Yu, Gwon-Jong;Kim, Jun-Tae;Lee, Kil-Song
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

A Study on the Energy Reduction of a Heating Network Through the Application of an Absorption Heat Pump (열원조건 분석 통한 흡수식 히트펌프 적용 열에너지 네트워크의 에너지 절감 예측)

  • Na, Sun-Ik;Lee, Young-Soo;Baik, Young-Jin;Lee, Gilbong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.239-248
    • /
    • 2017
  • At the $21^{st}$ Conference of the Parties (COP) of the United Nations Climate change Conference, representatives of the 195 member countries reached an agreement requiring all participating countries, including Korea, to establish proactive measures to fight climate change. Under this vision, energy network technologies are deemed as a key site of research towards meeting this goal. Herein, the headquarters of the Korea Institute of Energy Research (KIER) is a worthy site for carrying out energy network technology research insofar as it contains various heat sources. To prepare for this research, a study was conducted analyzing the heat sources at KIER based on measured data. The study also consisted of developeding simulation models to predict the amount of energy savings that could be derived by replacing an absorption chiller/heater with an absorption heat pump during winter seasons. In our simulation results, we observed a primary energy saving ratio of 65~72% based on the water temperature from the heat source of a coal power plant.

A study on the change of root surface irradiated by Er:YAG laser (Er:YAG laser를 조사한 치근면의 변화에 관한 연구)

  • Lee, Sang-Hyun;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.303-314
    • /
    • 2002
  • This study was performed to evaluate the usability of Er:YAG laser for periodontal therapy. Forty dental root slabs ($5{\times}5{\times}2mm^3$) were prepared from human periodontally diseased extracted teeth and grouped into 4 groups: 1) control (root planing only), 2) root planing and irradiated with laser at 30mJ, 3) root planing and irradiated with laser at 60mJ, and 4) root planing and irradiated with laser at 100mJ. The root slabs were embedded in resin block before laser treatment. Er:YAG laser was irradiated under water irrigation with the tip held perpendicular to the root surface in contact mode. After Er:YAG laser irradiation or planing on the root surface, morphological changes have been observed under SEM, and the micro-hardness and Ca/P ratio were compared. 1. In the Control group, the root surface showed the directional change caused by root planing instrumentation, and the presence of smear layer, and no exposure of dentinal tubule was observed. Laser irradiated group showed surface changes with rough dentin surface of niche and depression and dentinal tubule exposure by the elimination of smear layer. 2. The micro-hardness of root surface in the laser irradiated group was higher than the control group. The higher energy output was applied, the higher micro-hardness on root surface was resulted. 3. The higher energy output was applied, the higher Ca/P ratio was observed. The higher Ca/P ratio in 60mJ group and 100mJ group was statistically significantly compared to the control group and the 30mJ group. These results suggest that Er:YAG laser irradiation on the periodontally diseased root surface could remove smear layer and increase the micro-hardness on root surface and Ca/P ratio which contribute to enhance the acid resistance of periodontally treated root surface.

Study of Combustion Characteristics with Compression Ratio Change in Ultra-Lean LPG Direct Injection Engine (압축비 변화에 따른 초희박 직접분사식 LPG엔진의 연소특성 연구)

  • Cho, See Hyeon;Yoon, Jun Kyu;Park, Cheol Woong;Oh, Seung Mook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.837-844
    • /
    • 2014
  • Automotive manufacturers have recently developed various technologies for improving fuel economy and satisfying enhanced emission regulations. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of ignition. A conventional LPG engine has been redesigned to an ultra-lean-burn LPG direct injection engine in order to adopt combustion system of ultra-lean-burn. This study is aimed at investigating the effect of a change in the compression ratio on the performance and emission characteristics of a lean-burn LPG engine. The fuel consumption, heat release rate, combustion pressure, and emission characteristics are estimated depending on changing the effect of compression ratio. When the compression ratio is increased, it is difficult to improve the fuel consumption owing to an unstable combustion state, but the total hydrocarbon and nitrogen oxide emissions are reduced.

Chip Forming Characteristics of Bi-S Free Machining Steel (Bi-S 쾌삭강의 칩생성특성)

  • 조삼규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.48-54
    • /
    • 2000
  • In this study the characteristics of chip formation of the cold drawn Bi-S free machining steels were assessed. And for comparison those of the cold drawn Pb-S free machining steel the hot rolled low carbon steel which has MnS as free machining inclusions and the conventional steels were also investigated. During chip formation the cold drawn free machining steels show relatively little change in thickness and width of chip compare to those of the conventional carbon steels. And a single parameter which indicates the degree of deformation during chip formation chip cross-section area ratio is introduced. The chip cross-section area ratio is defined as chip cross-section area is divided by undeformed chip cross-section area. The variational patters of the chip cross-section area ratio of the materials cut are similar to those of the shear strain values. The shear stress however seems to be dependent on the carbon content of the materials. The cold drawn Bi-S and Pb-S steels show nearly the same chip forming behaviors and the energy consumed during chip formation is almost same. A low carbon steel without free machining aids shows poor chip breakability due to its high ductility. By introducing a small amount of free machining inclusions such as MnS Bi, Pb or merely increasing carbon content the chip breakability improves significantly.

  • PDF

Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions (고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성)

  • Kim, Jun-Tak;Kim, Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.3
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.

A Sensorless MPPT Control Using an Adaptive Neuro-Fuzzy Logic for PV Battery Chargers (태양광 배터리 충전기를 위한 적응형 신경회로망-퍼지로직 기반의 센서리스 MPPT 제어)

  • Kim, Jung-Hyun;Kim, Gwang-Seob;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this paper, the sensorless MPPT algorithm is proposed where the performance of varied duty ratio change has been improved using multi-layer neuro-fuzzy that aligns with neuro-fuzzy based optimized membership function. Since the change of duty ratio of sensorless MPPT is varied by using the neuro-fuzzy, the MPPT response speed is faster than the convectional method and is able to reduce the steady-state ripple. The neuro fuzzy controller has the response characteristics which is superior to the existing fuzzy controller, because of the usage of the optimal width of the fuzzy membership function. The effectiveness of the proposed method has been verified by simulations and experimental results.