• Title/Summary/Keyword: energy balance method

Search Result 412, Processing Time 0.03 seconds

Analysis of Meridian Energy and its Change Pattern with Time using Measurement of Skin-Capacitance on Source Points (체표 캐패시턴스 측정 방식을 이용한 체표 경락.경혈 에너지 변화 분석)

  • Kim, Soo-Byung;Kwon, Sun-Min;Myoung, Hyoun-Seok;Lee, Kyoung-Joung;Kang, Hee-Jung;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.26 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Objectives : The object of this study is to investigate the balance/imbalance of skin capacitances between left and right meridians, and to analyze the change patterns of electric energy on meridians with the lapse of time. Method : Electric potential was measured on five source points (LU9, PC7, HT7, LI4, SI4) bilaterally for 4 hours. The energy balance/imbalance between left and right was investigated, and the change patterns with time were analyzed. Results and Conclusions : The amplitude of meridian energy on five source points and the energy balance/imbalance between left and right were varied in each individual. When a source point showed a balanced meridian energy bilaterally, the change patterns of meridian energy with time were similar between left and right. While, when it showed an imbalanced energy between left and right, the change patterns of meridian energy were also different between left and right. Through this study, we proposed a new diagnostic method of meridian energy.

  • PDF

Estimation of CH4 oxidation efficiency in an interim landfill cover soil using CO2/CH4 ratios

  • Park, Jin-Kyu;Lee, Won-Jae;Ban, Jong-Ki;Kim, Eun-Cheol;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.191-197
    • /
    • 2015
  • The first objective of this study was to discuss the applicability of the $CO_2/CH_4$ ratio method in order to assess $CH_4$ oxidation efficiency. To achieve this objective, a comparison between $CO_2/CH_4$ ratios and the mass balance method was conducted. The second objective of this study was to estimate the $CH_4$ oxidation efficiency in an interim landfill soil cover and assess how a $CH_4$ influx influences the $CH_4$ oxidation efficiency. The results showed that despite the $CO_2$ problems brought by respiration, the $CH_4$ oxidation efficiencies obtained by the $CO_2/CH_4$ ratio method led to similar results compared to the mass balance method. In this respect, the $CO_2/CH_4$ ratio method can be an indicator of the $CH_4$ oxidation efficiencies for landfill cover soils. The $CH_4$ oxidation efficiencies derived in this study through the $CO_2/CH_4$ ratio method ranged between 46% and 64%, and between 41% and 62% through the mass balance method. The results imply that the Intergovernmental Panel on Climate Change's (IPCC) default value of 10% for the $CH_4$ oxidation efficiency is an underestimation for landfill cover soils. $CH_4$ oxidation efficiency tends to be negatively correlated with $CH_4$ influx. Therefore, $CH_4$ influx reaching a landfill cover should be limited in order to increase the $CH_4$ oxidation efficiency.

Dietary Reference Intakes for Protein: Protein Requirement and Estimation Method, AMDR (Amount of Macronutrient Distribution Range), for Protein (단백질 섭취기준: 단백질 필요량과 추정 방법 및 단백질에너지 적정비율)

  • Chang, Soon-Ok
    • Journal of Nutrition and Health
    • /
    • v.44 no.4
    • /
    • pp.338-343
    • /
    • 2011
  • This study assessed the current EAR, RDA, and AMDR for protein, which were set in 2005 and revised in 2010 as the DRIs for Koreans. A classical approach to establish the EAR for protein has been the nitrogen balance method. This method has practical limitations and problems in statistical analysis by giving over estimations of nitrogen balance. Thus, the present EAR for protein might be lower than the true requirement. Recent reevaluations of nitrogen balance studies by bilinear regression analysis and the IAAO method have indicated that the EAR of 0.66 g/kg bw/d should be increased by 39% to give 0.92 g/kg bw/d. The AMDR for protein in the Korean DRIs was set at 7-10%, which covers almost the entire population's protein intake. Since the 5th percentile of Korean protein intake is close to 10% of energy and due to the beneficial effects of protein beyond the maintenance of nitrogen equilibrium, the lower range of 7% needs to be increased up to 10%. For practical meal arrangement, 15% of energy as protein, which is close to the average protein intake of Koreans, seems to be proper, although the value is almost two times the EAR.

Estimation of Evapotranspiration in Mongolian Grassland using Remotely Sensed and Ground data

  • Tuya, Sanjaa;Kajiwara, Koji;Honda, Yoshiaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.292-294
    • /
    • 2003
  • Evapotranspiration estimations are essential for monitoring drought, wild land fire risk etc. In this study, a surface energy balance method, which combines meteorological observations with spectral data derived from remote sensing measurements, was used to estimate the regional evapotranspiration in the Mongolia, a large arid and semi-arid region with heterogeneous surface conditions. The Surface Energy Balance method has been applied to Landsat+ETM and NOAA-AVHRR sensors for the estimation of evapotranspiration in the grassland of Mongolia. As a result, a daily evapotranspiration map of Mongolia was produced.

  • PDF

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

High Efficiency Alternating Current Driver for Capacitive Loads Using a Current-Balance Transformer

  • Baek, Jong-Bok;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2011
  • This paper proposes a new alternating current driving method for highly capacitive loads such as plasma display panels or piezoelectric actuators, etc. In the proposed scheme, a current balance transformer, which has two windings with the same turn-ratio, provides not only a resonance inductance for energy recovery but also a current balance among all of the switching devices of the driver for current stress reduction. The smaller conduction loss than conventional circuits occurs due to the dual conduction paths which are parallel each other in the current balance transformer. Also, the leakage inductances of the transformer are utilized as resonant inductors for energy recovery by the series resonance to the capacitive load. Furthermore, the resonance contributes to the small switching losses of the switching devices by soft-switching operation. To confirm the validity of the proposed circuit, prototype hardware with a 12-inch mercury-free flat fluorescent lamp is implemented. The experimental results are compared with a conventional energy-recovery circuit from the perspective of luminance performances.

Evapotranspiration Estimation Study Based on Coupled Water-energy Balance Theory in River Basin

  • Xue, Lijun;Kim, JooCheol;Li, Hongyan;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.146-146
    • /
    • 2018
  • Basin evapotranspiration is the result of water balance and energy balance, which is affected by climate and underlying surface characteristics, the process is complex, and spatial and temporal variability is large, the evapotranspiration estimation of river basin is an important but difficult problem in the field of hydrology, over the years, many scholars devoted to the basin actual evapotranspiration estimation and achieved excellent results. We discuss Budyko coupled water-energy balance theory and evaporation paradox, then use the Fu's equation to estimate actual evapotranspiration yearly in different areas with different dryness. The result shows that Fu's equation has high precision for estimating evapotranspiration yearly in our selected study area, and the estimation result has higher precision in the area with high dryness. Then, we propose an improved formula which can be used to estimate actual evapotranspiration monthly. Furthermore, we found that the parameter in the formula reflects general conditions of underlying surface and it is affected by several factors, at last, we tried to propose the calculation formula. The study indicates that Fu's equation provides a reliable method for evapotranspiration estimation in dry regions as well as semi-humid and semi-arid regions, which has great significance for forecasting river basin water resources and inquiring into ecological water requirement.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

A Study on the Charge Balance Characteristics of Super Junction MOSFET with Deep-Trench Technology (Deep-Trench 기술을 적용한 Super Junction MOSFET의 Charge Balance 특성에 관한 연구)

  • Choi, Jong-Mun;Huh, Yoon-Young;Cheong, Heon-Seok;Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.356-361
    • /
    • 2021
  • Super Junction structure is the proposed structure to minimize the Trade-off phenomenon of power devices. Super Junction can have On-resistance(Ron) characteristics as less as five times than conventional structure. There are process methods that Multi-Epi and Deep-Trench of Super Junction structure. The reason for this is that Deep-Trench process is known to be a relatively difficult manufacturing method because it is easy to form a P-Pillar by burying impurities on top of a silicon substrate through a Deep-Trench process. However, the structure created by the Deep-Trench process has low On-resistance and high breakdown voltage, showing better efficiency. In this paper, we suggested a novel method in the process and designed structure with Charge Balance theory.

Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler (발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • In this study, a multi-zone furnace analysis method that couples a 1D energy and mass balance calculation with a 3D radiative heat transfer calculation is tested in order to verify its reliability. The calculated results for a domestic 500 MW capacity coal-fired boiler furnace were compared with the design data of the boiler manufacturer and CFD analysis, and a good agreement was achieved. Although this calculation method is less sophisticated than the CFD furnace analysis, it has an advantage in terms of calculation time while being able to provide the furnace behavior according to the fuel characteristics and operational variable changes. Therefore, it is expected to be useful for boiler operation diagnosis and daily fuel/operation planning.