• 제목/요약/키워드: endpoint detection

검색결과 74건 처리시간 0.026초

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • 장해규;김대경;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

In-situ Endpoint Detection for Dielectric Films Plasma Etching Using Plasma Impedance Monitoring and Self-plasma Optical Emission Spectroscopy with Modified Principal Component Analysis

  • 장해규;채희엽
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2012
  • Endpoint detection with plasma impedance monitoring and self-plasma optical emission spectroscopy is demonstrated for dielectric layers etching processes. For in-situ detecting endpoint, optical-emission spectroscopy (OES) is used for in-situ endpoint detection for plasma etching. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. To overcome these problems, the endpoint was determined by impedance signal variation from I-V monitoring (VI probe) and self-plasma optical emission spectroscopy. In addition, modified principal component analysis was applied to enhance sensitivity for small area etching. As a result, the sensitivity of this method is increased about twice better than that of OES. From plasma impedance monitoring and self-plasma optical emission spectroscopy, properties of plasma and chamber are analyzed, and real-time endpoint detection is achieved.

  • PDF

FIR filtering에 의한 끝점추출에 관한 연구 (A Study on the Endpoint Detection by FIR Filtering)

  • 이창영
    • 음성과학
    • /
    • 제5권1호
    • /
    • pp.81-88
    • /
    • 1999
  • This paper provides a method for speech detection. After first order FIR filtering on the speech signals, we applied the conventional method of endpoint detection which utilizes the energy as the criterion in separating signals from background noise. By FIR filtering, only the Fourier components with large values of [amplitude x frequency] become significant in energy profile. By applying this procedure to the 445-words database constructed from ETRI, we confirmed that the low-amplitude noise and/or the low-frequency noise are separated clearly from the speech signals, thereby enhancing the feasibility of ideal endpoint detections.

  • PDF

스펙트럼 패턴 기반의 잡음 환경에 강인한 음성의 끝점 검출 기법 (Spectral Pattern Based Robust Speech Endpoint Detection in Noisy Environments)

  • 박진수;이윤재;이인호;고한석
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.111-117
    • /
    • 2009
  • In this paper, a new speech endpoint detector in noisy environment is proposed. According to the previous research, the energy feature in the speech region is easily distinguished from that in the speech absent region. In conventional method, the endpoint can be found by applying the edge detection filter that finds the abrupt changing point in feature domain. However, since the frame energy feature is unstable in noisy environment, the accurate edge detection is not possible. Therefore, in this paper, the novel feature extraction method based on spectrum envelop pattern is proposed. Then, the edge detection filter is applied to the proposed feature for detection of the endpoint. The experiments are performed in the car noise environment and a substantial improvement was obtained over the conventional method.

  • PDF

웨이브렛 변환을 이용한 음성신호의 끝점검출 (Endpoint Detection of Speech Signal Using Wavelet Transform)

  • 석종원;배건성
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.57-64
    • /
    • 1999
  • 본 논문에서는 잡음이 포함된 음성의 시작점과 끝점을 효율적으로 검출할 수 있는 알고리듬에 대하여 연구하였다. 이를 위해, 웨이브렛 영역에서의 에너지 분포를 고려함으로써 잡음환경하에서도 음성을 검출할 수 있는 새로운 검출 파라미터를 제안하였다. 제안된 끝점검출 파라미터는 웨이브렛 영역에서 세 번째 coarsed 스케일의 표준편차와 가중치를 곱한 첫 번째 detailed 스케일의 표준편차의 합으로 정의하였다. 제안된 끝점검출기의 성능평가를 위해서 다양한 SNR에서 기존방식과 비교하여 시작점과 끝점의 정확도 실험을 수행하였고 HMM 음성인식시스템을 이용하여 인식실험도 수행하였다.

  • PDF

Weighted Finite State Transducer-Based Endpoint Detection Using Probabilistic Decision Logic

  • Chung, Hoon;Lee, Sung Joo;Lee, Yun Keun
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.714-720
    • /
    • 2014
  • In this paper, we propose the use of data-driven probabilistic utterance-level decision logic to improve Weighted Finite State Transducer (WFST)-based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame-level speech/non-speech classification based on statistical hypothesis testing, and the second process is a heuristic-knowledge-based utterance-level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST-based approach. However, a WFST-based approach has the same limitations as conventional approaches in that the utterance-level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data-driven probabilistic utterance-level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy-speech corpora collected for an endpoint detection evaluation.

단어 경계 검출 오류 보정을 위한 수정된 비터비 알고리즘 (A Modified Viterbi Algorithm for Word Boundary Detection Error Compensation)

  • 정훈;정익주
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권1E호
    • /
    • pp.21-26
    • /
    • 2007
  • In this paper, we propose a modified Viterbi algorithm to compensate for endpoint detection error during the decoding phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition performance is highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection error, we describe an unconstrained search of word boundaries and present an algorithm to explore the search space with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, from 84.4% to 10.6%, while consuming only a little more computation power.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Ramp Edge Detection을 이용한 끝점 검출과 음절 분할에 관한 연구 (A Study on Endpoint Detection and Syllable Segmentation System Using Ramp Edge Detection)

  • 유일수;홍광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2216-2219
    • /
    • 2003
  • Accurate speech region detection and automatic syllable segmentation is important part of speech recognition system. In automatic speech recognition system, they are needed for the purpose of accurate recognition and less computational complexity, In this paper, we Propose improved syllable segmentation method using ramp edge detection method and residual signal Peak energy. These methods were used to ensure accuracy and robustness for endpoint detection and syllable segmentation system. They have almost invariant response to various background noise levels. As experimental results, we obtained the rate of 90.7% accuracy in syllable segmentation in a condition of accurate endpoint detection environments.

  • PDF

HMM Based Endpoint Detection for Speech Signals

  • 이용형;오창혁
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.75-76
    • /
    • 2001
  • An endpoint detection method for speech signals utilizing hidden Markov model(HMM) is proposed. It turns out that the proposed algorithm is quite satisfactory to apply isolated word speech recognition.

  • PDF