• Title/Summary/Keyword: endothelial cell proliferation

Search Result 204, Processing Time 0.027 seconds

Study on the Anti-angiogenic Therapy to Cancer disease with Oriental medicine (혈관신생억제를 통한 종양치료의 한의학적 고찰)

  • Song, Kee-Cheol;Choi, Byung-Ryel;Lee, Yong-Yeon;Seo, Sang-Hoon;Yoo, Hwa-Seung;Cho, Jung-Hyo;Lee, Yeon-Weol;Son, Chang-Gyu;Cho, Chong-Kwan;Choi, Woo-Jin
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.639-645
    • /
    • 2001
  • Angiogenesis is a fundamental process in reproduction and wound healing. Under these condition, neovascularization is tightly regulated. Unregulated angiogenesis may lead to several angiogenic diseases, and is thought to be indispensible for solid tumor growth and metastsis. The construction of new vascular network is a multistep cascade involving basement membrane degradation, endothelial cell proliferation, endothelial cell migration, and tube formation. Newly reported anti-angiogenic agents in oriental medical field have targeted both specific and multistep stages in the angiogenic process. From recent approach in oriental medical field with several herb medicines including activating blood flow and removing blood stasis medicine(活血化瘀藥), it may be possible in the future to develope specific anti-angiogenic agents that offer a less toxic potential therapy for cancer and angiogenic disease.

  • PDF

Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo

  • Yoo, Youngbum;Hyun, Hoon;Yoon, Sun-Jung;Kim, So Yeon;Lee, Deok-Won;Um, Sewook;Hong, Sung Ok;Yang, Dae Hyeok
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.365-372
    • /
    • 2018
  • Wounds that heal with excessive scar formation result in poor functional and aesthetic outcomes. To address this, in our study, visible light cured glycol chitosan (GCH) hydrogels containing endothelial growth factor (EGF) and basic fibroblast growth factor (bFGF) were prepared (GCH-EGF, GCH-FGF and GCH-EGF/FGF) and evaluated their efficacies on the improvement of wound healing in vivo. In vitro release test showed that the growth factors were released in a sustained manner along with initial burst for 24 h. In vitro cell proliferation assay of L-929 mouse fibroblast cell line resulted in the superior ability of GCH-EGF/FGF on the rate. In vivo results demonstrated that the growth factor loaded GCHs further enhanced wound healing compared with GCH. In particular, GCH-EGF/EFG showed the most remarkable wound healing effect among the samples.

RalA-binding Protein 1 is an Important Regulator of Tumor Angiogenesis (Tumor angiogenesis에 있어서 RLIP76의 중요성)

  • Lee, Seunghyung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Tumor angiogenesis is important in tumorigenesis and therapeutic interventions in cancer. To know inhibitor and effector of tumor angiogenesis in cancer, the specific gene of tumor and angiogenesis may develop the mechanisms of cancer suppression and therapy. Recently, we described the role of RalA-binding protein 1 (RLIP76) in tumor angiogenesis. Tumor vascular volumes were diminished, and vessels were fewer in number, shorter, and narrower in RLIP76 knockout mice than in wild-type mice. Moreover, angiogenesis in basement membrane matrix plugs was blunted in the knockout mice in the absence of tumor cells, with endothelial cells isolated from the lungs of these animals exhibiting defects in migration, proliferation, and cord formation in vitro. RLIP76 is expressed in most human tissues and is overexpressed in many tumor types. In addition, the protein regulates tumorigenesis and angiogenesis in vivo and in vitro. As the export of chemotherapy agents is a prominent cellular function of RLIP76, it is a major factor in mechanisms of drug resistance. Moreover, RLIP76 acts as a selective effector of the small GTPase, R-Ras, and regulates R-Ras signaling, leading to cell spreading and migration. Furthermore, in skin carcinogenesis, RLIP76 knockout mice are resistant, with tumors that form showing diminished angiogenesis. Thus, RLIP76 is required for efficient endothelial cell function and angiogenesis in solid tumors.

Effect of Endothelin-1 on the Proliferation and Activity of HOS Cells (Endothelin-1이 HOS 세포의 증식과 활성에 미치는 영향)

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.4
    • /
    • pp.319-329
    • /
    • 2001
  • Endothelin-1 (ET-1) is a recently discovered potent vasoconstrictive peptide. It was first identified in vascular endothelial cells. ET-1 is a 21-amino acid peptide and elicits systemic effects such as stimulation of the production of atrial natriuretic peptide and release of aldosterone and corticosterone. In this study, to examine the role of ET-1 in the bone metabolism, effect of ET-1 on the proliferation and activity of osteoblastic cells was studied using HOS cells as osteoblast model. ET-1 dose-dependently increased the cell proliferation as determined by cell counting and MTT reduction assay after 48hr treatment. Alkaline phosphatase activity was inhibited by ET-1 and showed significant inhibition by 50 and 100 nM ET-1. ET-1 increased NBT reduction by HOS cells dose-dependently showing that ET-1 may increase the superoxide production by osteoblasts. Nitrite concentration in the media of HOS cell culture without cytokine stimulation was negligible and unaffected by ET-1 after 48hr treatment. Finally, after collection and concentration of conditioned media, gelatinase activity produced by HOS cells was determined by zymography. HOS cells can produce and secrete the gelatinase (gelatinase A type as determined by molecular weight of about 65,000) into culture media, however, ET-1 had no effect on the gelatinase activity. These findings suggest that ET-1 may have diverse effects on the proliferation and differentiation of osteoblasts, therefore, it may play an important role in bone metabolism.

  • PDF

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5 (Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제)

  • Ha, Jung-Min;Kim, Hyun-Kyung;Kim, Myoung-Rae;Joe, Young-Ae
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1199-1206
    • /
    • 2006
  • Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

Study on Antiangiogenic Effect of Black Ginseng Radix (흑삼의 신생혈관 억제활성에 대한 연구)

  • Song, Gyu-Yong;Chung, Kyu-Jin;Shin, Young-Jin;Lee, Gye-Won;Lee, Sook-Young;Seo, Young-Bae
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.83-90
    • /
    • 2011
  • Objectives : This study was performed to investigate the influence of black ginseng radix extracts (BG) and ginsenoside Rg3, Rg5 on basic fibroblast growth factor (bFGF) induced proliferation, migration and capillary tubule-like formation of human umbilical vein endothelial cells (HUVECs). Methods : HUVECs were cultured with BG and ginsenoside Rg3, Rg5 at different concentrations (60, 125, 250, 500, $1,000{\mu}g/m\ell$) for 2 day In the presence of bFGF, respectively. XTT was used to detect the proliferation. Migration and tube formations were examined to detect the antiangiogenesis. Also, the chick embryo chorioallantoic membrane (CAM) assay was performed to detect the antiangiogenesis. Results : BG and ginsenoside Rg3, Rg5 significantly inhibited bFGF-induced endothelial cell proliferation and migration in a dose-dependent manner. Tube formation in bFGF-induced HUVECs were suppressed by BG and ginsenoside Rg3, Rg5. Moreover, BG and ginsenoside Rg3, Rg5 (30-$50{\mu}g$/egg) inhibited new blood vessel formation on the growing CAM. Conclusions:Based on the present results, it can be suggested that BG has a potential chemopreventive agent via antiangiogenesis.

Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3

  • Maryam Nakhjavani;Eric Smith;Kenny Yeo;Yoko Tomita;Timothy J. Price;Andrea Yool;Amanda R. Townsend;Jennifer E. Hardingham
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.171-180
    • /
    • 2024
  • Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

Expression of HERV-HX2 in Cancer Cells and Human Embryonic Stem Cells

  • Jung, Hyun-Min;Choi, Seoung-Jun;Kim, Se-Hee;Moon, Sung-Hwan;Yoo, Jung-Ki;Chung, Hyung-Min;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • The endogenous retrovirus-like elements (HERVs) found on several human chromosomes are somehow involved in gene regulation, especially during the transcription level. HERV-H, located on chromosome Xp22, may regulate gastrin-releasing peptide receptor (GRPR) in connection with diverse diseases. By suppression subtractive hybridization screen on SV40-immortalized lung fibroblast (WI-38 VA-13), we discovered that expression of HERV-HX2, a clustered HERV-H sequence on chromosome X, was upregulated in immortalized lung cells, compared to that of normal cells. Expression of HERV-HX2 was then analyzed in various cell lines, including normal somatic cells, cancer cells, SV40-immortalized cells, and undifferentiated and differentiated human embryonic stem cells. Expression of HERV-HX2 was specifically upregulated in continuously-dividing cells, such as cancer cells and SV40-immortalized cells. Especially, HERV-HX2 in HeLa cells was highly upregulated during the S phase of the cell cycle. Similar results were obtained in hES cells, in which undifferentiated cells expressed more HERV-HX2 mRNA than differentiated hES cells, including neural precursor and endothelial progenitor cells. Taken together, our results suggest that HERV-HX2 is upregulated in cancer cells and undifferentiated hES cells, whereas downregulated as differentiation progress. Therefore, we assume that HERV-HX2 may playa role on proliferation of cancer cells as well as differentiation of hES cells in the transcriptional level.

Synergistic Effects of Tamoxifen and Tranilast on VEGF and MMP-9 Regulation in Cultured Human Breast Cancer Cells

  • Darakhshan, Sara;Bidmeshkipour, Ali;Khazaei, Mozafar;Rabzia, Arezou;Ghanbari, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6869-6874
    • /
    • 2013
  • Background: Vascular endothelial growth factor and matrix metalloproteinases are two important factors for angiogenesis associated with breast cancer growth and progression. The present study was aimed to examine the effects of tamoxifen and tranilast drugs singly or in combination on proliferation of breast cancer cells and also to evaluate VEGF and MMP-9 expression and VEGF secretion levels. Materials and Methods: Human breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with tamoxifen and/or tranilast alone or in combination and percentage cell survival and proliferative activity were evaluated using LDH leakage and MTT assays. mRNA expression and protein levels were examined by real-time RT-PCR and ELISA assay, respectively. Results: LDH and MTT assays showed that the combined treatment of tamoxifen and tranilast resulted in a significant decrease in cell viability and cell proliferation compared with tamoxifen or tranilast treatment alone, with significant decrease in VEGF mRNA and protein levels. We also found that tamoxifen as a single agent rarely increased MMP-9 expression. A decrease in MMP-9 expression was seen after treatment with tranilast alone and in the combined treatment MMP-9 mRNA level was decreased. Conclusions: This combination treatment can able to inhibit growth, proliferation and angiogenesis of breast cancer cells.