DOI QR코드

DOI QR Code

Visible light-cured glycol chitosan hydrogel dressing containing endothelial growth factor and basic fibroblast growth factor accelerates wound healing in vivo

  • Yoo, Youngbum (Department of Surgery, School of Medicine, The Konkuk University) ;
  • Hyun, Hoon (Department of Biomedical Sciences, Chonnam National University Medical School) ;
  • Yoon, Sun-Jung (Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital) ;
  • Kim, So Yeon (Department of Dental Hygiene, College of Health Sciences, Cheongju University) ;
  • Lee, Deok-Won (Department of Oral & Maxillofacial Surgery, Kyung Hee University Dental Hospital at Gangdong, Kyung Hee University) ;
  • Um, Sewook (Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University) ;
  • Hong, Sung Ok (Department of Dentistry, Catholic Kwandong University, School of Medicine, International St. Mary's Hospital) ;
  • Yang, Dae Hyeok (Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea)
  • Received : 2018.06.12
  • Accepted : 2018.07.05
  • Published : 2018.11.25

Abstract

Wounds that heal with excessive scar formation result in poor functional and aesthetic outcomes. To address this, in our study, visible light cured glycol chitosan (GCH) hydrogels containing endothelial growth factor (EGF) and basic fibroblast growth factor (bFGF) were prepared (GCH-EGF, GCH-FGF and GCH-EGF/FGF) and evaluated their efficacies on the improvement of wound healing in vivo. In vitro release test showed that the growth factors were released in a sustained manner along with initial burst for 24 h. In vitro cell proliferation assay of L-929 mouse fibroblast cell line resulted in the superior ability of GCH-EGF/FGF on the rate. In vivo results demonstrated that the growth factor loaded GCHs further enhanced wound healing compared with GCH. In particular, GCH-EGF/EFG showed the most remarkable wound healing effect among the samples.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry, and Energy (MOTIE), National Research Foundation of Korea (NRF)

References

  1. S. Barrientos, O. Stojadinovic, M.S. Golinko, H. Brem, M. Tomic-Canic, Wound Rep. Reg. 16 (2008) 585. https://doi.org/10.1111/j.1524-475X.2008.00410.x
  2. S.E. Lynch, R.B. Colvin, H.N. Antoniades, J. Clin. Invest. 84 (1989) 640. https://doi.org/10.1172/JCI114210
  3. D.H. Yang, D.I. Seo, D.-W. Lee, S.H. Bhang, K. Park, G. Jang, C.H. Kim, H.J. Chun, J. Ind. Eng. Chem. 53 (2017) 360. https://doi.org/10.1016/j.jiec.2017.05.007
  4. J. Hardwicke, D. Schmaljohann, D. Boyce, D. Thomas, Surgeon 6 (2008) 172. https://doi.org/10.1016/S1479-666X(08)80114-X
  5. S. Akita, K. Akino, A. Hirano, Adv. Wound Care 2 (2013) 44. https://doi.org/10.1089/wound.2011.0324
  6. J.W. Park, S.R. Hwang, I.-S. Yoon, Molecules 22 (2017) 1259. https://doi.org/10.3390/molecules22081259
  7. H. Liu, C. Wang, C. Li, Y. Qin, Z. Wang, F. Yang, Z. Li, J. Wang, RSC Adv. 8 (2018) 533.
  8. S.-J. Yoon, H. Hyun, D.-W. Lee, D.H. Yang, Molecules 22 (2017) 1513. https://doi.org/10.3390/molecules22091513
  9. Z. Di, I. Yoshihiro, Sci. China Chem. 57 (2014) 510-521. https://doi.org/10.1007/s11426-014-5069-z
  10. I.A. Darby, B. Laverdet, F. Bonte, A. Desmouliere, Clin. Cosmet. Investig. Dermatol. 7 (2014) 301.
  11. A. Sood, M.S. Granick, N.L. Tomaselli, Adv. Wound Care 3 (2014) 511. https://doi.org/10.1089/wound.2012.0401
  12. K. Lee, E.A. Silva, D.J. Mooney, J. Royal Soc. Interface 8 (2011) 153. https://doi.org/10.1098/rsif.2010.0223
  13. S. Cohen, Dev. Biol. 12 (1965) 394. https://doi.org/10.1016/0012-1606(65)90005-9
  14. G.L. Brown, L.J. Curtsinger, M. White, R.O. Mitchell, J. Pietsch, R. Nordquist, A. von Fraunhofer, G.S. Schultz, Ann. Surg. 208 (1988) 788. https://doi.org/10.1097/00000658-198812000-00019
  15. G. Schultz, D.S. Rotatori, W. Clark, J. Cell. Biochem. 45 (1991) 346. https://doi.org/10.1002/jcb.240450407
  16. G.L. Brown, L.B. Nanney, J. Griffen, A.B. Cramer, J.M. Cramer, J.M. Yancey, L.J. Curtsinger 3rd, L. Holtzin, G.S. Schultz, M.J. Jurkiewicz, J.B. Lynch, N. Engl. J. Med. 321 (1989) 76. https://doi.org/10.1056/NEJM198907133210203
  17. H.-X. Shi, C. Lin, B.-B. Lin, Z.-G. Wang, H.-Y. Zhang, F.-Z. Wu, Y. Cheng, L.-J. Xiang, D.-J. Guo, X. Luo, G.-Y. Zhang, X.-B. Fu, S. Bellusci, X.-K. Li, J. Xiao, PLOS One 8 (2013)e59966. https://doi.org/10.1371/journal.pone.0059966
  18. S. Akita, K. Akino, A. Hrano, Adv. Wound Care 2 (2013) 44. https://doi.org/10.1089/wound.2011.0324
  19. R.R. Batchelor, G. Kwandou, P.T. Spicer, M.H. Stenzel, Polym. Chem. 8 (2017) 980. https://doi.org/10.1039/C6PY02034H
  20. R. Bettini, P. Colombo, G. Massimo, P.L. Catellani, T. Vitali, Eur. J. Pharm. Sci. 2 (1994) 213. https://doi.org/10.1016/0928-0987(94)90025-6
  21. A. Song, A.A. Rane, K.L. Christman, Acta Biomater. 8 (2012) 41. https://doi.org/10.1016/j.actbio.2011.10.004
  22. T.J. Koh, L.A. DiPietro, Expert Rev. Mol. Med. 13 (2011) e23. https://doi.org/10.1017/S1462399411001943
  23. C. Troidl, H. Mollmann, H. Nef, F. Masseli, S. Voss, S. Szardien, M. Willmer, A. Rolf, J. Rixe, K. Troidl, S. Kostin, C. Hamm, A. Elsasser, J. Cell. Mol. Med.13 (2009) 3485. https://doi.org/10.1111/j.1582-4934.2009.00707.x
  24. R.J. Bodnar, Adv. Wound Care 2 (2013) 24. https://doi.org/10.1089/wound.2011.0326
  25. S.A. Eming, P. Martin, M. Tomic-Canic, Sci. Transl. Med. 6 (2014) 265sr6. https://doi.org/10.1126/scitranslmed.3009337

Cited by

  1. Photo-Cured Glycol Chitosan Hydrogel for Ovarian Cancer Drug Delivery vol.17, pp.1, 2019, https://doi.org/10.3390/md17010041
  2. Marine Collagen Peptides Promote Cell Proliferation of NIH-3T3 Fibroblasts via NF-κB Signaling Pathway vol.24, pp.22, 2018, https://doi.org/10.3390/molecules24224201
  3. Recent Advances in the Controlled Release of Growth Factors and Cytokines for Improving Cutaneous Wound Healing vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00638
  4. Gelation and release behavior of visible light-curable alginate vol.52, pp.3, 2018, https://doi.org/10.1038/s41428-019-0280-6
  5. Biocompatible Polyphosphorylcholine Hydrogels with Inherent Antibacterial and Nonfouling Behavior Effectively Promote Skin Wound Healing vol.3, pp.8, 2020, https://doi.org/10.1021/acsabm.0c00666
  6. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.650598
  7. Visible Light-Cured Antibacterial Collagen Hydrogel Containing Water-Solubilized Triclosan for Improved Wound Healing vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092270
  8. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1 vol.31, pp.5, 2021, https://doi.org/10.1080/13543776.2021.1903433
  9. Investigation of the potential therapeutic effect of cationic lipoplex mediated fibroblast growth factor-2 encoding plasmid DNA delivery on wound healing vol.29, pp.2, 2018, https://doi.org/10.1007/s40199-021-00410-y
  10. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis vol.19, pp.1, 2021, https://doi.org/10.1186/s12951-020-00755-7