• Title/Summary/Keyword: end-of-life vehicles

Search Result 59, Processing Time 0.028 seconds

Treatment of ASR from End-of-Life Vehicles by Air and Gravimetric Separation (廢自動車 ASR의 風力 및 比中選別에 의한 處理 硏究)

  • Lee, Hwa-Young;Oh, Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • A study on the air and gravity separation has been performed for the removal of chlorine containing materials from ASR of end-of-life vehicles. The gravity separation was also conducted on waste plastics collected from ASR. In this work, ASR were previously shredded to pass through 8 mm sieve prior to separation tests and the gravity separation of waste plastics was conducted for three different particle sizes. The two-stage air classification was conducted with the range of air flow rate of 9~20 M$^3$/hr at first stage and 25~34 M$^3$/hr at second stage, respectively. The fraction of overflow product was remarkably increased in the 2nd stage air classification because of high air flow rate while that of underflow product obtained from 1st stage air classification was found to be 62~66%. From the results of gravity separation on waste plastics, it was also found that the amount of the float product was much greater than sink product. It is believed that the gravity separation may be used very efficiently for the removal of calorine bearing materials from waste plastics.

Recycling of Copper & Nickel in ASR to satisfy the EU ELV Directive (유럽연합 환경기준 충족을 위한 자동차폐기물 내의 구리와 니켈 재활용에 대한 연구)

  • Lee, Hyun-Chang;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1729-1734
    • /
    • 2009
  • About 40 million automotive vehicles all over the world and 0.55 million in Korea were retired from use annually. Every nation is desperate to decrease environmental pollution by ELVs(End of Life Vehicles) and try to tighten the regulations. Europe passed laws requiring OEMs to increase vehicles' recovery and reuse rate to 95% by 2015 from current 84%. The ferrous parts, 75% of total automobile weight, are almost recycled whereas the remaining 25% of the non-metal -predominantly plastics as well as form, glass and rubber- and the non-ferrous materials -copper, nickel and aluminium- end up in landfills. The recycling status of non-ferrous materials represented by copper and nickel is reviewed and how much the recycling rate will be improved is calculated.

Vibration Fracture and Microstructural Behavior with respect to Pb-free Solders (Lead-free Solder의 진동특성 평가)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Lee, Chang-Woo;Yoo, Se-Hoon;Hong, Won-Sik
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.76-76
    • /
    • 2010
  • 무연솔더 재료를 자동차 전장품에 적용하기 위해서는 고온환경에 대한 내구성 및 진동 인자에 대한 영향을 고려해야한다. 특히, ELV(End of Life Vehicles) 지침이 개정됨에 따라 고온용 무연솔더 재료에 대한 재평가가 반드시 필요한 시점이다. 이에 대해 본연구에서는 현재 상용화 된 Pb-free솔더의 재료들 중 총 4종의 Solder을 선정하여 자동차 환경에 부합하는 진동조건하에서 시험해보았다. 그리고 미세조직의 특성, 접합부 형성시의 기계적 강도 및 접합부의 신뢰성을 평가하여 보았다. 각각의 조성에 대한 CHIP type과 QFP type의 실장부품을 준비하였으며, 각각의 조성별로 솔더 페이스트로 Daisy Chain PCB에 접합하여 조성에 따른 비교 데이터를 구축할 수 있었다. 리플로우 공정후 초기의 미세조직 및 전당강도, 저항값을 측정하여 진동시험에 따른 데이터와 비교하였다. 주파수는 10Hz~1,000Hz였으며, 진동가속도는 $29.4m/s^2$, 20시간의 랜덤진동이 적용되는 동안 챔버내의 온도는 상온으로 유지되었다. 진동시험과 이에 따른 저항측정을 통하여 진동 주파수와 시간에 따른 실장 부품이 받는 진동 영향과 실시간 저항값을 측정하였으며, 이때의 미세조직 비교를 통해 진동특성을 평가하였다. 진동 주파수에 따른 저항값의 변화가 있었으며, 진동전후 전단강도에도 영향을 주었다. QFP type에서는 SAC105가 진동에 가장 취약하였으며, CHIP type에서는 SACX0307이 진동에 가장 취약하였다.

  • PDF

Remanufacturing Industry for Automobile Parts of European (유럽의 자동차부품 재제조산업에 관한 연구)

  • Mok, Hak-Soo;Jeon, Chang-Su;Han, Chang-Hyo;Park, Sang-Jin;SaKong, Hoon;Gunther, Seliger
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.38-44
    • /
    • 2011
  • Remanufacturing is restoring or manufacturing the worn-out or discarded components of an end of life product in order to bring it to the "like new" condition. The aim is to reprocess used products in such a manner that the quality of the products is as good as or better than the new one, in terms of appearance, reliability and performance. This paper investigates the automotive remanufacturing industry in Europe. To further knowledge in this field, the paper focuses on the remanufacturing of the automotive components of end-of-life vehicles. The paper scope emphasizes key remanufacturing companies, which are identified and were surveyed in terms of their business structures. The research aims to address the potential for growth within the remanufacturing industry, with regard to various players. The state of the art in remanufacturing of automotive equipment will be identified.

A study on System Requirement Structure of LRT's System on the advanced Systems Engineering (시스템엔지니어링 기법 적용에 따른 경량전철시스템 요구사항체계 구축에 관한 연구)

  • Heo, Jae-Hun;Bae, Joon-Ho;Choi, Won-Chan;Bae, Sung-Hoon;Joo, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1523-1529
    • /
    • 2011
  • Light Rail Transit is system that offer target Performance and function because various sub-system such as vehicles, power supply, signaling, communication, mechanical, track, civil is consisted as large complex system. Light Rail Transit and the complex system of safety, reliability to be a behavior, and target performance and function properly to system's configuration, design, manufacture, installation and test verification, through operations system requirements to accurately describe what It is more important. With this study, light rail system KSX ISO/IEC 15288 system life cycle process by applying engineering techniques utilizing light rail system in the early stages of construction from the concept, design, production, operation, maintenance and end-use to the disposal stage throughout the entire life cycle, from the beginning of construction until the end of construction of the stakeholder to define requirements, analyze the introduction of the system developers and system requirement of those who wish to be described accurately by selecting the best system and system requirement in order to achieve their purpose.

  • PDF

A Study on Monitoring System Architecture for Calculation of Practical Recycling Rate of End of Life Vehicle (폐자동차의 실질적 재활용률 산정을 위한 모니터링 체계에 관한 연구)

  • Park, Jung Whan;Yi, Hwa-Cho;Park, Myon Woong;Sohn, Young Tae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.373-378
    • /
    • 2012
  • The end-of-life vehicles (ELV) are important recycling sources, and there are several stages involved in the recycling such as dismantling, shredding, and treatment of shredder residues (ASR). The legal recycling rate should be at least 95% on and after 2015, while we need a proper system to monitor recycling of ELV components and to calculate the practical recycling rate. The paper suggests a monitoring system that calculates practical recycling rates of dismantled components by use of a database of standard recycling rate as well as a web-based monitoring, which is linked to the Eco Assurance system for electric & electronic equipment and vehicle (EcoAS). Also the system supports dismantling and monitoring process by incorporating a standard vehicular component database, which facilitates recording dismantled weight data but also monitoring of dismantled components.

End-of-Life Vehicle Rating Classification for Remanufacturing Core Collection (재제조 코어 회수를 위한 폐자동차 등급 분류)

  • Son, Woo Hyun;Li, Wen Hao;Mok, Hak Soo
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.11-23
    • /
    • 2018
  • The need for remanufacturing automotive parts is required due to the depletion of resources, rising raw material prices and strengthening environmental regulations. For remanufacturing, stable supply and demand of core must be accompanied. At present, remanufacturing companies collect cores through various routes, but the recovery rate of cores from the End-of-Life Vehicles is low. If we can systematically collect cores from hundreds of thousands of ELVs that were generated each year, the recovery rate of the core for remanufacturing will be further improved. Therefore, in this paper, we tried to establish a classification system for the ELV as a method for collecting the cores from the ELV. First, we selected the elements affecting the classification and determined the scope for the evaluation. The final rating classification is established by calculating the weights among the influence elements. Finally, through the case study, the dismantling grade of the actual ELV was evaluated to derive the second grade.

Policy Suggestion for Fostering the Industry of Using End of Life EV Batteries (전기차 사용 후 배터리 재사용 산업 육성을 위한 정책 제안)

  • LEE, HEE DONG;LIM, OCK TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, we proposed the necessity of reusing the battery industry after domestic use, preparing legal arrangements by step for recycling, clarifying responsible materials by processing stage, and establishing infrastructure and screening diagnostic rating system. The purpose of this study is to establish a life cycle integrated management system for electric vehicle batteries and to find suitable ways for improving the lifespan of electric vehicle batteries, reuse, and recycling in stages to avoid other environmental pollution problems due to batteries after using electric vehicles used to reduce environmental pollution due to climate change.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Fault- Tolerant Tasking and Guidance of an Airborne Location Sensor Network

  • Wu, N.Eva;Guo, Yan;Huang, Kun;Ruschmann, Matthew C.;Fowler, Mark L.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.351-363
    • /
    • 2008
  • This paper is concerned with tasking and guidance of networked airborne sensors to achieve fault-tolerant sensing. The sensors are coordinated to locate hostile transmitters by intercepting and processing their signals. Faults occur when some sensor-carrying vehicles engaged in target location missions are lost. Faults effectively change the network architecture and therefore degrade the network performance. The first objective of the paper is to optimally allocate a finite number of sensors to targets to maximize the network life and availability. To that end allocation policies are solved from relevant Markov decision problems. The sensors allocated to a target must continue to adjust their trajectories until the estimate of the target location reaches a prescribed accuracy. The second objective of the paper is to establish a criterion for vehicle guidance for which fault-tolerant sensing is achieved by incorporating the knowledge of vehicle loss probability, and by allowing network reconfiguration in the event of loss of vehicles. Superior sensing performance in terms of location accuracy is demonstrated under the established criterion.