• Title/Summary/Keyword: end-effector

Search Result 368, Processing Time 0.019 seconds

DEVELOPMENT OF A 3-DOF ROBOT FOR HARVESTING LETTUCE USING MACHINE: VISION AND FUZZY LOGIC CONTROL

  • S. I. Cho;S. J. Chang;Kim, Y. Y.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.354-362
    • /
    • 2000
  • In Korea, researches on year-round leaf vegetables production system are in progress, most of them focused on environmental control. Therefore, automation technologies for harvesting, transporting, and grading are in great demand. A robot system for harvesting lettuces, composed of a 3-DOF (degree of freedom) manipulator, an end-effector, a lettuce feeding conveyor, an air blower, a machine vision system, six photoelectric sensors, and a fuzzy logic controller, was developed. A fuzzy logic control was applied to determine appropriate grip force on lettuce. Leaf area index and height were used as input variables and voltage as an output variable for the fuzzy logic controller. Success rate of the lettuce harvesting was 94.12%, and average harvesting time was approximately 5 seconds per lettuce.

  • PDF

Development of A Automatic Transplanter for Bedding Plants Between Tray (육묘상자간 자동 육묘 이식 시작기 개발)

  • 류관희;한재성;류찬석;김기영
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2000
  • This study was carried out to develop gripper which to adaptive variable tray and to develop automatic transplanting system for seedling-production system between tray. This system consisted of five set of gripper and end-effector, a planting-width control unit, a tray transfer unit, and gripper moving device which move gripper between nursing tray and growing tray. This system used push-out rod to grasp plant instead of pull-out end -effector. Several types of fingers, which physically grip seedlings, were also developed and tested to ensure reliable transplanting operation of the gripper. The transplanting system detaches seedlings from a tray with push-o0ut rods, which were installed under the tray transfer unit. The performance of the transplanting system was evaluated by successive transplanting experiments. Using the best type of finger , the transplanting system produced 94.6% of transplanting success rate.

  • PDF

Development of a 2-DOF Robot System for Harvesting a Lettuce (2 자유도 상추 수확 로봇 시스템 개발)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF

OBSTACLE-AVOIDANCE ALGORITHM WITH DYNAMIC STABILITY FOR REDUNDANT ROBOT MANIPULATOR WITH FRUIT-ILARVESTING APPLICATIONS

  • Ryu, Y.S.h;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1063-1072
    • /
    • 1996
  • Fruit harvesting robots should have more diversity and flexibility in the working conditions and environments than industrial robots. This paper presents an efficient optimization algorithm for redundant manipulators to avoid obstacles using dynamic performance criteria, while the optimization schemes of the previous studies used the performance criteria using kinematic approach. Feasibility and effectiveness of this algorithm were tested through simulations on a 3-degrees-of-freedom manipulator made for this study. Only the position of the end-effector was controlled , which requires only three degrees of freedom. Remaining joints, except for the wrist roll joint, which does not contribute to the end-effector linear velocity, provide two degrees of redundancy. The algorithm was effective to avoid obstacles in the workspace even through the collision occurred in extended workspace, and it was found be to a useful design tool which gives more flexibility to design conditions nd to find the mechanical constraints for fruit harvesting robots.

  • PDF

Solution Space of Inverse Differential Kinematics (역미분기구학의 해 공간)

  • Kang, Chul-Goo
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.230-244
    • /
    • 2015
  • Continuous-path motion control such as resolved motion rate control requires online solving of the inverse differential kinematics for a robot. However, the solution space of the inverse differential kinematics related to Jacobian J is not well-established. In this paper, the solution space of inverse differential kinematics is analyzed through categorization of mapping conditions between joint velocities and end-effector velocity of a robot. If end-effector velocity is within the column space of J, the solution or the minimum norm solution is obtained. If it is not within the column space of J, an approximate solution by least-squares is obtained. Moreover, this paper introduces an improved mapping diagram showing orthogonality and mapping clearly between subspaces, and concrete examples numerically showing the concept of several subspaces. Finally, a solver and graphics user interface (GUI) for inverse differential kinematics are developed using MATLAB, and the solution of inverse differential kinematics using the GUI is demonstrated for a vertically articulated robot.

Visual Servoing of Robot Manipulators using Pruned Recurrent Neural Networks (저차원화된 리커런트 뉴럴 네트워크를 이용한 비주얼 서보잉)

  • 김대준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.259-262
    • /
    • 1997
  • This paper presents a visual servoing of RV-M2 robot manipulators to track and grasp moving object, using pruned dynamic recurrent neural networks(DRNN). The object is stationary in the robot work space and the robot is tracking and grasping the object by using CCD camera mounted on the end-effector. In order to optimize the structure of DRNN, we decide the node whether delete or add, by mutation probability, first in case of delete node, the node which have minimum sum of input weight is actually deleted, and then in case of add node, the weight is connected according to the number of case which added node can reach the other nodes. Using evolutionary programming(EP) that search the struture and weight of the DRNN, and evolution strategies(ES) which train the weight of neuron, we pruned the net structure of DRNN. We applied the DRNN to the Visual Servoing of a robot manipulators to control position and orientation of end-effector, and the validity and effectiveness of the pro osed control scheme will be verified by computer simulations.

  • PDF

Extended Operational Space Formulation for the Kinematics, Dynamics, and Control of the Robot Manipulators with Redundancy (여유자유도 로봇의 기구학, 동역학 및 제어를 위한 확장실공간 해석)

  • 장평훈;박기철;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3253-3269
    • /
    • 1994
  • In this paper a new concept, named the Extended Operational Space Formulation, has been proposed for the effective analysis and real-time control of the robot manipulators with kinematic redundancy. The extended operational space consists of operational space and optimal null space. The operational space is used to describe robot end-effector motion; whereas the optimal null space, defined as the target space of the self motion manifold, is used to express the self motion for the secondary tasks. Based upon the proposed formulation, the kinematics, statics, and dynamics of redundant robots have been analyzed, and an efficient control algorithm has been proposed. Using this algorithm, one can optimize a performance measure while tracking a desired end-effector trajectory with a better computational efficiency than the conventional methods. The effective ness of the proposed method has been demonstrated with simulations.

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

Real-time Motion Generation of Virtual Character using the Stereo Images (스테레오 영상을 이용한 가상 캐릭터의 실시간 동작 생성)

  • Lee, Ran-Hee;Kim, Sung-En;Park, Chang-Jun;Lee, In-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • 본 논문에서는 2 대의 카메라로부터 입력된 스테레오 영상을 이용하여 가상캐릭터의 동작을 실시간으로 생성하는 방법에 대해 기술한다. 이 시스템은 동작자의 움직임을 캡쳐하기 위해 동작자의 좌, 우 전방에 동기화된 2 대의 컬러 CCD 카메라를 위치시킨다. 카메라로부터 입력된 스테레오 영상을 분석하여 신체의 중심이 되는 루트와 머리, 손, 발과 같은 end-effector의 2차원 특징점을 추출하고, 추출된 특징점들은 카메라의 사영행렬과 추적 알고리즘을 통해 3차원 위치를 생성한다. 생성된 루트와 end-effector 의 3 차원 위치정보는 노이즈 제거를 위한 필터링을 거친 후 역운동학 알고리듬에 적용하고, 인체 관절의 해부학적인 제약조건과 관절간의 상호 연관성 및 전 후 프레임간의 부드러운 연결 동작 생성을 고려하여 중간관절의 위치를 정밀하게 계산한다. 중간관절의 위치를 생성하므로 서 임의 동작자의 움직임에 대한 모든 관절의 정보를 획득할 수 있으며, 획득된 동작 데이터를 가상 캐릭터에 적용하므로 서 캐릭터의 움직임을 실시간으로 생성할 수 있다.

  • PDF

Visual Servoing of Robot Manipulators using the Neural Network with Optimal structure (최적구조의 신경회로망을 이용한 로붓 매니퓰레이터의 비주얼 서보잉)

  • Kim, Dae-Joon;Lee, Dong-Wook;Chun, Hyo-Byong;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1269-1271
    • /
    • 1996
  • This paper presents a visual servoing combined by evolutionary algorithms and neural network for a robotic manipulators to control position and orientation of the end-effector. Using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we generate the control input to agree the target image, to realize the visual servoing. The validity and effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF