• Title/Summary/Keyword: end-coupled

Search Result 250, Processing Time 0.025 seconds

Design of an extremely miniaturized branch-line coupler

  • Kang, In Ho;Li, Xi Qiang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.995-999
    • /
    • 2014
  • In this paper, a new size-reduction approach for branch-line coupler is introduced which uses parallel end-shorted coupled lines with lumped capacitors. The characteristic of the new design was analyzed using even-odd mode method, and simulated on HFSS before fabricated on the FR4 epoxy glass cloth copper-clad plat (CCL) PCB substrate at center frequency of 1 GHz. The electrical length of transmission line was reduced to 15 degrees, therefore the size of branch-line coupler was largely reduced approximately maintaining the same characteristic around the stable center frequency. The insertion loss of the branch-line coupler filter was -4.39 dB. The size of the overall hybrid is $20mm{\times}20mm$. Measurements results were well agreed with the simulated ones.

Compact Planar Dual-Wideband Bandstop Filters with Cross Coupling and Open-Ended Stepped Impedance Resonators

  • Velidi, Vamsi Krishna;Sanyal, Subrata
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.148-150
    • /
    • 2010
  • This letter presents the design of a compact bandstop filter (BSF) operating at two frequencies. The proposed BSF consists of open-ended stepped impedance resonators (OSIR) and an end-shorted parallel-coupled microstrip line (E-PCML). The OSIRs are used to achieve the impedance-controlled stopband positions. The wide BSF bandwidths are achieved through enhanced coupling of the E-PCML. Explicit design guidelines are derived using a lossless transmission line model. To validate theoretical predictions, a prototype dual-band BSF operating at 900 MHz and 2,100 MHz with fractional bandwidths of 72% and 36%, respectively, is implemented in microstrip.

Performance Analysis of 30 kVA Super-Conducting Generator under Light Load (30 kVA 초전도 발전기의 소용량 부하 인가시 운전특성 해석)

  • Ha, Kyoung-Duck;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.271-273
    • /
    • 1999
  • In this paper 30 kVA Super-Conducting Generator's test and analysis results of OCC and SCC are presented. Also the test and FE analysis results of the generator under 1.2, 2.4, and 3.6[kW] load are described. For FE analysis of the generator's performance, the external circuit is coupled with the FE region. The generator's end winding reactance is obtained based on the design data, actual dimension, preliminary FE analysis, and empirical formulas. The comparison of FE analysis coupled with external circuit to the test results shows a good agreement.

  • PDF

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

Reliable Overlay Multicast with Loosely Coupled TCP Connections

  • Kwon, Gu-In;Byers, John
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.306-317
    • /
    • 2009
  • We consider the problem of architecting a reliable content delivery system across an overlay network using TCP connections as the transport primitive. We first argue that natural designs based on store-and-forward principles that tightly couple TCP connections at intermediate end-systems impose fundamental performance limitations, such as dragging down all transfer rates in the system to the rate of the slowest receiver. In contrast, the ROMA architecture we propose incorporates the use of loosely coupled TCP connections together with fast forward error correction techniques to deliver a scalable solution that better accommodates a set of heterogeneous receivers. The methods we develop establish chains of TCP connections, whose expected performance we analyze through equation-based methods. We validate our analytical findings and evaluate the performance of our ROMA architecture using a prototype implementation via extensive Internet experimentation across the PlanetLab distributed testbed.

Evaluation of the influence of interface elements for structure - isolated footing - soil interaction analysis

  • Rajashekhar Swamy, H.M.;Krishnamoorthy, A.;Prabakhara, D.L.;Bhavikatti, S.S.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.65-83
    • /
    • 2011
  • In this study, two extreme cases of compatibility of the horizontal displacements between the foundation and soil are considered, for which the pressure and settlements of the isolated footings and member end actions in structural elements are obtained using the three dimensional models and numerical experiments. The first case considered is complete slip between foundation and soil, termed as the un-coupled analysis. In the second case of analysis, termed as the coupled analysis, complete welding is assumed of joints between the foundation and soil elements. The model and the corresponding computer program developed simulate these two extreme states of compatibility giving insight into the variation of horizontal displacements and horizontal stresses and their intricacies, for evaluation of the influence of using the interface elements in soil-structure interaction analysis of three dimensional multiscale structures supported by isolated footings.

77-GHz mmWave antenna array on liquid crystal polymer for automotive radar and RF front-end module

  • Kim, Sangkil;Rida, Amin;Lakafosis, Vasileios;Nikolaou, Symeon;Tentzeris, Manos M.
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.262-269
    • /
    • 2019
  • This paper introduces a low-cost, high-performance mmWave antenna array module at 77 GHz. Conventional waveguide transitions have been replaced by 3D CPW-microstrip transitions which are much simpler to realize. They are compatible with low-cost substrate fabrication processes, allowing easy integration of ICs in 3D multi-chip modules. An antenna array is designed and implemented using multilayer coupled-fed patch antenna technology. The proposed $16{\times}16$ array antenna has a fractional bandwidth of 8.4% (6.5 GHz) and a 23.6-dBi realized gain at 77 GHz.

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

A Study on 30 kVA Super-Conducting Generator Performance using Open Circuit, Short Circuit Characteristics, and Load Tests (개방회로, 단락회로 특성시험 및 부하시험을 이용한 30 kVA 초전도 발전기의 특성해석)

  • Ha, Gyeong-Deok;Hwang, Don-Ha;Park, Do-Yeong;Kim, Yong-Ju;Gwon, Yeong-Gil;Ryu, Gang-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.85-92
    • /
    • 2000
  • 30 kVA rotating-field type Super-Conducting Generator is built and tested with intensive FE(Finite Element) analysis. The generator is driven by VVVF inverter-fed induction motor. Open Circuit Characteristic(OCC) and Short Circuit Characteristic(SCC) are presented in this paper. Also, the test result under the light load(up to 3.6 kW) are given. From the design stage, 2-D FE analysis coupled with the external circuit has been performed. The external circuit includes the end winding resistance and reactance as well as two dampers. When compared with the test data, the FE analysis results show a very good agreement.

  • PDF