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Reliable Overlay Multicast with Loosely Coupled TCP
Connections

Gu-In Kwon and John Byers

Abstract: We consider the problem of architecting a reliable con-
tent delivery system across an overlay network using TCP connec-
tions as the transport primitive. We first argue that natural designs
based on store-and-forward principles that tightly couple TCP con-
nections at intermediate end-systems impose fundamental perfor-
mance limitations, such as dragging down all transfer rates in the
system to the rate of the slowest receiver. In contrast, the ROMA
architecture we propose incorporates the use of loosely coupled
TCP connections together with fast forward error correction tech-
niques to deliver a scalable solution that better accommodates a
set of heterogeneous receivers. The methods we develop establish
chains of TCP connections, whose expected performance we ana-
lyze through equation-based methods. We validate our analytical
findings and evaluate the performance of our ROMA architecture
using a prototype implementation via extensive Internet experi-
mentation across the PlanetLab distributed testbed.

Index Terms: Overlay multicast, overlay network, reliable trans-
mission.

I. INTRODUCTION

For high-concurrency applications ranging from live stream-
ing to reliable delivery of popular content, a recent research
trend has proposed to serve these applications using end-system,
or application-level, multicast [1]-[6]. There is ample motiva-
tion for such an approach: Multicast-based delivery provides ex-
cellent scalability in terms of bandwidth consumption and server
load, while an end-system approach avoids the considerable de-
ployment hurdles associated with providing multicast function-
ality at the network layer. Typically, an end-system architec-
ture constructs an overlay topology, comprising collections of
unicast connections between end-systems, in which each con-
nection in the overlay is mapped onto a path in the underlying
physical network by Internet protocol (IP) routing. Additional
transport-level functionality such as congestion control and reli-
ability can then be realized by employing standard unicast trans-
port protocols. This methodology has been successfully applied
to develop best-effort, UDP-based methods for streaming appli-
cations, augmented with congestion control. At first glance, it
seems that a similar approach can be applied to high-bandwidth
applications requiring reliable delivery, merely by employing
separate TCP connections at each application-level hop. Use of
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Fig. 1. Buffering is inadequate for handling rate mismatches.

TCP is clearly desirable, as it is universally implemented, pro-
vides built-in congestion control and reliability, and does not
raise any questions of fairness. However, as we demonstrate
next, naively architecting the overlay in this fashion leads to
substantial performance degradation.

Consider a high-bandwidth upstream TCP flow relaying con-
tent through an end-system to a low-bandwidth downstream
TCP flow (as depicted in Fig. 1). As the transfer progresses, the
intermediate end-system is forced to buffer a growing number
of packets delivered by the upstream flow, but not yet sent to
the downstream flow. This unwieldy set of in-flight packets will
soon exceed the finite application level buffers available for re-
laying data at the intermediate end-system, and then there is a
problem to solve. One solution, as proposed in [7], is to use
push-back flow control to rate-limit the TCP connection of the
upstream sender. But it is easy to see that push-back flow con-
trol will recursively propagate all the way back to the source,
and thus this devolves into a scenario in which all TCP connec-
tions in the delivery tree must slow to a rate comparable to that
of the slowest connection in the tree. Using this method, even if
there is no bottleneck on a given source-to-receiver path, that re-
ceiver will nevertheless be forced to slow to the rate of the slow-
est receiver. In this sense, this method has performance which
closely resembles TCP-friendly single-rate multicast congestion
control [8], [9]. On the other hand, it is not clear how to devise
a TCP-based solution which provides an effective, multiple-rate
remedy.

Our main contribution in this paper is the design and evalua-
tion of reliable overlay multicast architecture (ROMA), a TCP-
based content delivery architecture. The primary set of target
applications are applications requiring reliability and high band-
width, such as delivery of large files. ROMA enables multiple-
rate reception, with individual rates that match the end-to-end
available bandwidth along the path, while using small buffers at
application-level relays, and the standard TCP protocol. The key
to our methods is to make a departure from the straightforward
approach in which each intermediate host forwards all received
packets to the downstream hosts to achieve reliability. Instead
of using this store-and-forward approach, we apply a forward-
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when-feasible approach, whereby each intermediary forwards
only those received packets to downstream hosts that can im-
mediately be written into the downstream TCP socket. We then
handle reliability at the application layer using erasure resilient
codes, also known as FEC codes, applying well-known tech-
niques developed for reliable (IP) multicast. The central com-
ponent that enables our methods is the use of the digital fountain
approach [10], a paradigm which is ideally capable of encoding
n packets of original content into an unbounded set of encoding
packets; and where receiving any n distinct encoding packets
allows the complete, efficient reconstruction of the source data.
Using the best codes currently available [11], a very close ap-
proximation to an idealized digital fountain can now be realized.
This method has been widely used to enable receivers to recover
from packet losses in the network; we apply it here to enable us
to drop packets at TCP socket buffers which are full.

Our second contribution is performance evaluation of the
chains of TCP connections that arise using our approach. We
refer to these chains of TCP connections from the sender to
end-hosts on a ROMA overlay as loosely coupled, since an up-
stream TCP connection may or may not affect the performance
of downstream TCP connections, but a downstream connection
never affects the performance of upstream connections. Apply-
ing standard equation-based methods [12], we examine the ex-
pected throughput across a chain of TCPs given per-hop RTTs
and per-hop loss rates, where hop refers to a hop in the over-
lay. Conventional wisdom indicates that overlay multicast typ-
ically incurs a performance penalty over IP multicast, due to
factors such as link stress, suboptimal routes, increased latency,
and end-host packet processing. However, TCP chains offer us
an opportunity to increase performance by finding an alterna-
tive overlay path whose narrowest hop in the chain gives better
expected TCP throughput than the default IP path. This perfor-
mance improvement is much in the spirit of alternative detour
routes described in [13] and [14]; these papers observe that IP
does not provide the “best” path, measured in terms of delay or
loss rates. We find that the best ROMA path is often a multi-hop
path in which the minimum expected TCP throughput along any
overlay hop is maximized.

Our third contribution is extensive PlanetLab [15] experimen-
tation and insights gained from preliminary deployment of our
system. We use a prototype Internet implementation that we
built to validate our analysis for chains of TCP connections and
to deploy our reliable multiple rate content delivery scheme.
One interesting finding is that for many pairs of PlanetLab end-
hosts, we can often optimize the ROMA layout to provide con-
siderably better end-to-end measured throughput using a chain
of loosely coupled TCPs than we could using a single, direct
TCP connection.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss other overlay multicast protocols and related
work on constructing alternatives to the end-to-end path that
IP provides. In Section III, we further motivate our work by
describing some candidate architectures and the limitations of
those proposed solutions. Then, in Section IV, we present the
details of the ROMA architecture, followed by an analysis of
chains of TCP connections in Section V. Extensive experimen-
tal results conducted on PlanetLab and ns-2 validate our analyt-

ical findings and conclude our paper in Section VI.

II. RELATED WORK IN OVERLAY DESIGN

A large body of work has recently been proposed to support
multicast functionality at the application layer, including [1],
[4]-{6], [16]-[19], and [22]. The design of overlay network lay-
out has also been impacted by work initiated in the measurement
community. We review and critique work in these two areas that
are relevant to our proposed methods.

Overcast [5], ALMI [6], PRM [16], and RMX [17] all address
the issue of reliability in distributing content to end hosts. PRM
was designed for applications which do not require perfect reli-
ability and focuses on improving the rate of data delivery while
maintaining low end-to-end latencies. ALMI and Overcast em-
ploy TCP to provide reliable file transfers between any set of
hosts. However, like the methods of [7], ALMI uses a back-
pressure mechanism to rate-limit the sender, resulting in a single
rate control. Overcast was explicitly designed with the goal of
building distribution trees that maximize each node’s throughput
from the source.However, the technical focus of Overcast was
exclusively on topology optimization, and they did not consider
issues associated with the transport protocol. Other works have
also focused on the problem of efficient tree construction and on
the challenges of optimizing the tree layout so as to minimize
network costs such as average latency; or to minimize overlay
costs, such as link stress; or to perform load balancing, such as
by bounding the maximum fanout [1], [4], [16], [18], [19], [22].

Results from the measurement community have also been
used in designing and optimizing overlay layouts. Savage et
al. [14] showed that the default IP path between two hosts of-
ten is quantitatively inferior to a “detour” route taken through
an intermediate end-system. Using a large set of Internet path
measurements taken between geographically diverse hosts, they
identified detour paths which have superior round-trip time, [oss
rate, or available bandwidth compared to the default path with
a surprising degree of regularity (at least 30 percent of mea-
sured paths had a detour path with shorter round-trip time, and
over 75 percent had a detour path with lower aggregate loss
rate). These results enabled the authors to identify detour paths
over which the expected TCP throughput was higher than the
default path (validated with actual TCP transfers). The design-
ers of RON [13] employed the idea of alternative paths in an
overlay context, and used paths similar to detour paths both to
improve performance and to route around faults in their overlay.
In our work, we leverage a similar measurement-driven strategy
to identify the best routes in our overlay so as to optimize the
layout of the set of TCP connections in our delivery tree. Our
analysis goes beyond the conservative model used to estimate
TCP performance common to both {13] and [14] — we find that
their methods underestimate the actual throughput that a chain
of TCPs is likely to see.

I11. CANDIDATE ARCHITECTURES

We first develop a basic model for an overlay network and
motivate our approach by describing the challenges that reliable
content delivery imposes and the limitations of current TCP-
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Fig. 2. Overview of TCP-based content delivery in an overlay.

based solutions. Fig. 2 depicts two intermediate systems using
a TCP-based overlay architecture. We refer to the node’s in-
coming buffer as its TCP receive buffer for its upstream link.
Similarly, the outgoing buffers of a node refer to its TCP send
buffers for its downstream links. In the introduction, we de-
scribed a simple store-and-forward method which tightly cou-
ples the TCP connections in the delivery tree:

o Store-and-Forward: For every packet arriving on an incom-
ing buffer, buffer the packet, then forward it to all outgoing
buffers.

As we saw in Fig. 1, when a downstream link is slower than an
upstream link, as the transfer progresses, the intermediate host
is forced to buffer a growing number of packets using the store-
and-forward approach. Working within the store-and-forward
paradigm, there are two solutions, but both lead to performance
problems of their own. We describe these alternatives next, then
move beyond the store-and-forward paradigm in the next sec-
tion.

A. Limited Buffer Space Solution

If the host has finite buffer space in application layer, the
push-back flow control or back-pressure mechanism [7], [6] can
be used to avoid buffer overflow. The basic operation of this ap-
proach is to dequeue the packet from the incoming buffer only
after it has been relayed in all of the outgoing buffers. In ad-
dition, coupling the flow control and congestion control avoids
any buffer overflow in the face of different speed of downstream
link. The intermediate host sends back an acknowledgment to its
parent only if the arriving packet can be copied into all outgoing
buffers. If there is insufficient space on any outgoing buffer, the
host stalls. This results in queue buildup at the incoming buffer
and subsequent decrease of the advertised window. The effects
of this decreased advertised window will ultimately propagate
all the way back to the source. This approach therefore results in
performance which translates to single rate congestion control,
where all nodes in the tree are sending packets to downstream
links at approximately the speed of the slowest link.
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B. Unlimited Buffer Space Solution

Another alternative is to generalize the notion of what con-
stitutes an application layer buffer for each downstream node.
Since each intermediate node is also participating in download-
ing the content, it must store all received packets for its own use.
When the content is large, this storage will take place on disk,
instead of in a system buffer. Therefore, the application can im-
plement store-and-forward by dequeuing each reliably received
packet from the incoming TCP buffer and storing that packet on
disk. Concurrently and independently, each outgoing buffer can
be filled from disk, using appropriate prefetching methods to
hide the substantial costs of I/O where possible. This approach
enables multiple rate transmission, but with the following limi-
tations:

o A separate application buffer for each downstream node is

required.

» Complexity to support I/O accesses to fill each outgoing

buffer is needed.

« The overlay cannot be adaptively reconfigured.

The first two limitations are clear, but the third (and arguably
the most serious), requires more careful discussion.

A robust overlay network should have the ability to adaptively
reconfigure itself when congestion or failures of intermediate
nodes occur. Therefore, a host must be able to switch its parent
to maximize its performance. But in many situations, this de-
sign does not facilitate such a transition. Consider the case of
host D in the example in Fig. 3, in which B, C, and D are per-
forming a reliable download from A. The average reception rate
for host D is 10Mbps, that of host C is 5 Mbps. Due to the dif-
ferent transfer rates from A, the data received by D and B will
be a prefix of the content that is twice the length of the prefix
received by C at any point in time. Now suppose that an hour
into the transfer, the B to D link becomes congested, degrading
performance to 1 Mbps. Host D would now prefer to use the
route through C, but since data coming from C after switching
to C are already received by D, this alternative route is useless to
D. (Note that this problem is specific to multi-rate reliable trans-
fers; it does not apply to the single rate back-pressure solution
or to live streaming applications).

A similar synchronization problem also arises in asyn-
chronous transfers when hosts initiate the downloads at different
times. Suppose that the average rate of all links are 10 Mbps and
host C joins thirty minutes later than host B and D joined. If we
consider the same condition described above (i.e., the B to D
link becomes congested), the alternative route from C to D is
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useless since C is thirty minutes behind (in terms of received
data).

This significant limitation seems to be difficult to find a
workaround for, but in fact, the use of erasure-resilient codes
in the ROMA architecture that we describe next provides a very
satisfactory solution that does not encounter any of the limita-
tions presented in this section.

1V. RELIABLE OVERLAY MULTICAST
ARCHITECTURE

We now describe ROMA, a simple reliable multi-rate over-
lay multicast architecture for reliable content delivery. The two
central novelties leveraged in our design are the use of erasure
resilient codes, as we describe in more detail in Section IV-A, to-
gether with the use of a forward-when-feasible paradigm, rather
than the standard store-and-forward paradigm:

o Forward-when-feasible: For every packet arriving on an
incoming socket, for each outgoing buffer, determine
whether it can immediately accept the newly arrived
packet. Copy the packet to those buffers which can accept
it, then deliver the packet to the application. (Those outgo-
ing buffers which are full will never receive or transmit a
copy of this packet).

Together with the encoding methods we employ, an interme-
diate host using the forward-when-feasible approach does not
have to store all received data in an application-level buffer and
as a result, managing buffer overflow is not a problem. In prac-
tice, we use one additional level of indirection to implement the
forward-when-feasible paradigm, a point we touch upon in the
following more detailed overview of the ROMA architecture:

» Each node runs TCP between the upstream and down-
stream link nodes and itself.

« While there are interested participants, the sender transmits
a continuous erasure-resilient encoding of the content of
size n along its downstream links.

« Each host dequeues the arrival packet from the incoming
TCP buffer and copies the packet to a small application
layer buffer managed as a circular queue. If the buffer is
full, then the host overwrites the buffer in a circular fashion.

+ Each intermediate host copies data to all outgoing buffers
that have available space.

o Each host completes its reception after receiving a set of
encoding packets of size approximately 1.03n (explanation
of this small 3% overhead to follow).

« Upon completing the reception of the original content, the
node may leave the ROMA group by closing its TCP con-
nections. In the event it elects to continue servicing down-
stream connections, it may do so either by continuing to
relay encoded content generated by the source, or by gen-
erating encoding symbols of its own from the full content,
and closing its upstream connection.

In the next section, we provide more details of erasure-
resilient codes, and the node architecture in the ROMA system.
We also describe how to transmit the encoded data on a byte-
stream transport protocol like TCP.

A. Erasure-Resilient Codes

We now review the basics of erasure-resilient codes’, a close
relative of error-correcting codes: While error-correcting codes
provide resilience to bit errors, erasure-resilient codes provide
resilience to packet-level losses. We use the following termi-
nology. The content being sent by the encoder is a sequence of
symbols {z1, -, z¢}, where each x; is called an inpur symbol.
An encoder produces a sequence of encoding symbols y1,ys, . . .
from the set of input symbols. For our application, we will set
the input and encoding symbol size both to be equal to a packet
payload. For the family of erasure-resilient codes we use, parity-
check codes, each encoding symbol is simply the bitwise XOR
of a specific subset of the input symbols. A decoder attempts to
recover the original content from the encoding symbols. For a
given symbol, we refer to the number of input symbols used to
produce the symbol as its degree, i.e., y3 = T3 © 4 has degree
2. Using the methods described in [28], the time to produce an
encoding symbol from a set of input symbols is proportional to
the degree of the encoding symbol, while decoding from a se-
quence of symbols takes time proportional to the total degree
of the symbols in the sequence. Encoding and decoding times
are a function of the average degree; when the average degree is
constant, we say the code is sparse. Well-designed sparse parity
check codes require recovery of a few percent (less than 5%)
of symbols beyond £, the minimum needed for decoding. The
decoding overhead of a code is defined to be €4 if (1 + €4)f
encoding symbols are needed on average to recover the origi-
nal content. (There is also a small amount of overhead for the
space needed in each packet to identify which input symbols
were combined, which is typically represented by a 64-bit ran-
dom seed.)

Provably good degree distributions for sparse parity check
codes were first developed and analyzed in [28]. However, these
codes are fixed-rate, meaning that only a pre-determined number
of encoding symbols are generated, for example only ¢/, where
¢ is a small constant (¢ > 1). In our application, this can lead to
inefficiencies as the origin server will eventually be forced to re-
transmit symbols. Newer codes, called rateless codes, avoid this
limitation and allow unbounded numbers of encoding symbols
to be generated on demand. Two examples of rateless codes,
along with further discussion of the merits of ratelessness, may
be found in [11] and [29]. Both of these codes also have have
strong probabilistic decoding guarantees, along with low decod-
ing overheads and average degrees. In our experiments, we sim-
ulate use of LT codes [11], and assume a fixed decoding over-
head of 3%.

The main benefit of erasure codes in our architecture is that
it makes it possible to design the control mechanisms indepen-
dently of reliability. Intuitively, using an erasure-resilient encod-
ing, packets can flow through ROMA intermediaries (all with
small buffers) toward a set of destinations, and can be dropped
whenever they reach a bottleneck (in the form of a full buffer).
With this intuition, one can see that this provides for a multiple
rate solution. The use of codes also enables a number of ad-
ditional benefits, including the ability to tolerate asynchronous
joins, the ability to adaptively reconfigure the topology, and the

1Often referred to as forward error-correcting (FEC) codes.
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Fig. 4. Overlay node implementation.

ability to speed up downloads with collaborative peer-to-peer
transfers as described in [2].

B. Transmitting Encoding Symbols with TCP

One nuance of using codes is that the encoding symbols must
be treated atomically, i.e., receipt of a fraction of an encoding
symbol is not useful. For this reason, some care must be taken to
send encoded symbols as logical segments, or datagrams, across
TCP. The main difficulty is to ensure that each encoding symbol
is written in its entirety into the TCP socket.

But, using only application-level, system-independent calls, it
is not simple to determine whether a given packet will fit into the
TCP send buffer without performing the write explicitly. Our
solution {(depicted in Fig. 4) is to maintain a one-packet over-
flow buffer per socket to store those bytes which could not be
successfully written into the socket. Before performing a subse-
quent write to the socket, the contents of the overflow buffer are
written first. Using this strategy, encoding symbols are always
written contiguously and in their entirety to the buffer.

C. Intermediate and Sender node Architecture

In our overlay multicast architecture, we assume that each
host is also participating in downloading the content and there-
fore must read data from the upstream socket into an application
layer buffer before writing into disk. In our implementation, we
use an application buffer of IMB to overcome the limitation of
small default socket buffer sizes on many systems. Most im-
plementations have an upper limit for the sizes of the socket
send buffer and the upper limit is only 256 KB in many systems.
Use of the application buffer for additional buffering at interme-
diate hosts avoids known pitfalls associated with bursty packet
arrivals when high bandwidth connections with large window
sizes use small socket buffers [31].

As described earlier, each intermediate host dequeues arriv-
ing packets and copies them to an application buffer. If the
buffer is full, then the host writes the packets in the buffer into
disk and overwrites the buffer in a circular fashion. The down-
stream socket buffer is filled from this application buffer, with

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 3, JUNE 2009

Hnnmn

TCP
receive buffer

TCP
send buffer

B=——0©

Fig. 5. Basic model for chains of TCP connections.

&)

each downstream socket making sure not to wrap around the tail
end of the circular queue.

The sender architecture is virtually identical to that of the in-
termediate node except that the application buffer is filled with
fresh encoding symbols (typically precomputed and stored on
disk) at a speed that is sufficient to satisfy the fastest down-
stream connection (note that data flowing from the server to its
children nodes are the subset of data of fastest downstream con-
nection). As with intermediate nodes, the sender also maintains
a one-packet overflow buffer for each downstream node to avoid
sending a fraction of an encoded packet. The functionality of the
sender is as follows:

« Files are encoded into encoding symbols that are stored on

disk prior to their delivery.

« A single, fixed-length memory buffer is used for all re-

ceivers.

o If the fastest receiver exhausts all data in the buffer, the

buffer is filled with new data from the disk.

The sender’s functionality is similar to the Cyclone webserver
architecture [30], which is optimized for delivery of content in
situations in which a group of clients is concurrently download-
ing a small set of large, popular files. In particular, the sender
can be optimized to employ the sliding cache buffer mechanism
in the Cyclone design to minimize the waiting time to fill the
buffer from the disk.

D. Adaptive Reconfiguration of ROMA

Another benefit from erasure codes in ROMA is that differ-
ent subset of packets are flowing on the link, as a result the host
does not receive duplicate packet from the other parent host after
switching parent. Consider the limitation of adaptive reconfig-
uration of unlimited buffer space solution described in Section
III-B. In Fig. 3, the packets coming from host C is the already
received packets by host D in unlimited buffer space solution,
but the packets coming from host C is the subset of packets
coming from host B in ROMA. This property enables the full
flexibility on adaptive overlay network and also we can employ
the method in work [2] to make multiple upstream links and in-
crease the performance further. Erasure codes also enable the
host to choose the parent without concerning about the informa-
tion of which packet will be received since the data sent in the
past will not be sent to any other host.

V. CHAINS OF TCP CONNECTIONS

We now provide a simple analysis of the chains of TCP con-
nections that arise in the design of our system.
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A. Modeling Chains of TCP Connections

For simplicity, we begin with the simple case of an overlay
host with just one upstream and one downstream TCP connec-
tion, depicted as host B in Fig. 5. In this example, B is just
relaying received packets to its one downstream host, i.e., it
sends TCP ACKs for received packets back to host A and trans-
mits data segments to host C. We assume that the overlay host
has sufficient memory space in the application layer to store re-
ceived packets in the case of a slower downstream link. (In the
ROMA design, this assumption is realized provided the applica-
tion layer buffer is sufficiently large that it never drains). In this
simple model, we assume that the intermediate host B dequeues
the packet from its TCP receive buffer fast enough to prevent
flow control algorithms from impacting its upstream transmis-
sion rate. Finally, we assume that the relevant network condi-
tions (loss rate, RTT) along the chain of connections are station-
ary over time. These assumptions (unlimited buffer and fast de-
queuing) make this chain of TCP connections loosely coupled,
which we define as follows:

Definition 1: A chain of TCP connections is loosely coupled
if an upstream TCP connection may or may not affect the per-
formance of a downstream TCP connection, but a downstream
connection never affects the performance of an upstream con-
nection.

If the downstream transfer rate is slower than the upstream
transfer rate, then the application layer buffer will grow without
bound. In this case, the downstream TCP will behave like a TCP
driven by an application that always has data to send, and thus
the performance of the downstream TCP is independent of the
upstream TCP.

Alternatively, consider the case in which the downstream
transfer rate is larger than the upstream transfer rate. In this
case, host B will periodically drain the application level buffer
filled by the upstream connection when sending packets to C,
and thus the downstream TCP connection has to wait for incom-
ing packets to send. Therefore, in this case, the downstream
throughput to C is limited to that of the upstream rate into B.

To develop formulas for the expected TCP throughput as a
function of the per-hop loss rates and RTTs, we employ the fol-
lowing equation derived in [12]:

rit ( oy (12\;%)17(1 + 32?2)) |

This provides an estimate of the expected throughput 7 of a
TCP connection in bytes/sec as a function of the packet size s,
the measured round-trip time r¢¢, and the steady state loss event
rate p. For simplicity in the remainder of the exposition, we use
the following simpler formula as a shorthand for the equation
above:

1)

V1.5
rtt\/]—?'

To extend this result to a chain of loosely coupled TCP con-
nections, our observations above demonstrate that a given hop
in the chain either has local network conditions that limit its rate
to a value below that of the upstream connections or is already

~

p =01%
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Fig. 6. Chains of TCP connections.

limited by the rate of the upstream connections. Also recall that
by the definition of loosely coupled connections, events down-
stream have no bearing on upstream throughput. Letting rt;
and p; respectively denote the round-trip time and loss rate ex-
perienced by a TCP connection traversing overlay hop i, the ex-
pected throughput to a ROMA host below hop j is:

V15 V15
rtti/Di Ttti/D5 )

In an overlay setting, one factor which is not captured by this
simple equation is the impact of link stress, which occurs when
distinct overlay hops 7 and k share underlying physical links.
Link stress further implies that measured values of p; and py
are not independent. We show the effect of link stress in our
experimental results, but do not incorporate this effect into our
simple model.

T ~ min

i<J

2)

B. Examples and a Comparison with Other Models

To develop some intuition, consider the example in Fig. 6, in
which the propagation delay and the loss rate on each link are
labeled. Using the direct route from A to C, and using the sim-
ple version of the throughput equation, the expected through-
put of direct unicast from A is about 9.0 Mbps. In contrast, the
throughput from A to C via B using a chain of two TCP connec-
tions is about 22.2 Mbps, which is also the expected throughput
along the direct B to C connection. In other words, the loss and
delay on the hop from A to B have no measurable impact on the
performance along the detour path from A to B to C.

It is worth noting that in previous work, a different, and more
conservative formula was used to estimate the throughput of a
chain of TCP connections. Following the methodology used in
[13], [14], the aggregate RTT is defined as the sum of rt¢; along
the path and the aggregate loss rate is defined as 1 — [ [(1 — p;)
(assuming uncorrelated losses). Instantiating these values into
the simple version of the throughput equation gives:

T~ \/ﬁ . 3)
Sorttin/1 =113 —pi)

Plugging the values from the example in Fig. 6 into this equation
gives expected throughput across the detour route of 9.0 Mbps,
or no different than the direct route. Indeed, it is easy to see
that in general, this aggregation model treats a “split” TCP con-
nection no differently than its aggregate. In practice, our ex-
perimental results demonstrate that this method of aggregation
underestimates throughput, while the model embodied by (2)
provides a much more accurate estimate.
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Table 1. End-to-end measured throughput.
Recei Sender Host
ccerver BU | UCLA | UTK [ Arizona | GI | Duke | Comell | Berkeley ]| UW
BU 64.1Mbps | 12.6 Mbps | 19.0 Mbps | 16.0 Mbps | 27.0 Mbps | 39.0 Mbps | 21.3 Mbps | 6.9 Mbps 8.7 Mbps
UCLA 17.9 Mbps | 88.0Mbps | 18.8 Mbps | 20.3 Mbps | 20.5 Mbps | 14.5Mbps | 14.3 Mbps | 38.6 Mbps 39 Mbps
UTK 47.0 Mbps | 18.8 Mbps | 98.0 Mbps | 21.0 Mbps | 46.3 Mbps | 39 Mbps | 29.1 Mbps | 18.7 Mbps || 12.8 Mbps
Arizona | 21.3Mbps | 21.7Mbps | 21.0 Mbps | 92.0 Mbps | 22.2 Mbps | 15.4Mbps | 19.0 Mbps | 21.7 Mbps || 19.3 Mbps
GT 53.9 Mbps | 18.8Mbps | 74.0 Mbps | 22.8 Mbps | 92.0 Mbps | 45.0 Mbps | 34.5Mbps | 18.8 Mbps || 17.1 Mbps
Duke 40.9 Mbps | 102Mbps | 26.8 Mbps | 10.3 Mbps | 31.8 Mbps | 92.0Mbps | 15.4Mbps | 9.5 Mbps 9.2 Mbps
Cornell | 33.1 Mbps | 14.5Mbps | 30.7 Mbps 19 Mbps 28.7Mbps | 154 Mbps | 98.0 Mbps | 16.3 Mbps 16.5 Mbps
Berkeley | 10.1 Mbps | 30.3Mbps | 12.6Mbps | 17.1Mbps | 13.4Mbps | 9.4 Mbps | 11.4Mbps | 98.1 Mbps || 38.4 Mbps

C. Discussion

Conventional wisdom indicates that overlay multicast typi-
cally incurs a performance penalty over IP multicast, due to fac-
tors such as link stress, stretch factor, and end host packet pre-
cessing. However as we have seen in the example in Fig. 6,
TCP chains also offer us an opportunity to increase perfor-
mance compared to direct unicast. This performance improve-
ment comes from finding an alternative overlay path whose nar-
rowest hop in the chain (as perceived by TCP) is wider than the
default path used by IP. In general, an improvement in through-
put can be realized whenever one identifies a decomposition of a
long TCP control loop into several smaller loops in which each
member of the chain has expected throughput greater than that
of the original loop. As we have argued, this gain applies even
when the aggregate loss rate and the aggregate RTT across this
chain are larger than the values of the original long loop. Break-
ing long TCP control loops in the context of overlay networks
has a similar effect as split TCP [21], which shortens the TCP
feedback loop and separates lossy components. Ideas from split
TCP are commonly used in satellite communication and in var-
ious terrestrial wireless contexts to improve TCP performance.

At this point, we feel compelled to note that TCP is not ac-
tually a mandatory component of the ROMA architecture. In
principle, any TCP-friendly protocol with forward error correct-
ing codes can be used to achieve the same performance benefits
and our analysis still applies as long as it follows (1). In prac-
tice, however, we prefer to use TCP because it is already ubig-
uitous and well understood, and because we feel that alternative
protocols would merely be imitating the TCP behavior. (The
potential benefits of UDP over TCP, e.g., for streaming or other
real-time applications, do not seem to apply to reliable transfer
applications.)

In the next section, we show that there exist ample opportuni-
ties to exploit this advantage in constructing overlay topologies
$0 as to maximize the total throughput to participant hosts across
the Internet.

VI. EXPERIMENTS

We have implemented ROMA [27] and conducted experi-
ments on the PlanetLab distributed testbed [15]. PlanetLab con-
sisted of 160 machines hosted by 65 sites in June 2003; we ran
experiments on a subset of roughly 30 sites. All PlanetLab ma-
chines run a Linux-based operating system and they all meet
certain hardware requirements (see details in [15]). Most of the
hosts in PlanetLab are university hosts and those hosts in the

U.S. are connected through Abilene, which has high capacity
and is highly available. Therefore, while the experiments we
conducted on PlanetLab are not intended to be representative of
typical Internet performance, they nevertheless enable us to val-
idate our models and performance of our architecture across a
substantial set of Internet paths.

For our experiments, we considered 1 GB transfers using a
packet size of 1 KB. As a baseline, we conducted end-to-end
transfers of this size between pairs of hosts using TCP. We re-
port on a representative subset of these baseline measurements
across Abilene in Table 1, where each entry represents the av-
erage measured throughput of ten independent measurements
from source nodes to destination nodes conducted in June 2003.
In addition, entries on the diagonal report measurements be-
tween two PlanetLab nodes at the same university. We will use
the name of university as the host name throughout this sec-
tion for simplicity. One important observation is the substantial
bandwidth asymmetry we see in our measurements. In some
cases, there are significant constant factor differences: For ex-
ample, between BU and UTK, the path asymmetry is 47 Mbps
vs. 19 Mbps.

This table is intended primarily to give a flavor of the data
rates we are working with, and does not capture the variability
of throughput measurements over time (which we found to be
relatively small on the lightly loaded Abilene backbone), nor
does it provide a highly accurate measure of available band-
width. One could certainly adapt our methods to address dy-
namic changes in available bandwidth, for example, by using
non-intrusive methods to monitor available bandwidth such as
pathload [25] or PTR [24]. In the following sections, we use val-
ues from the table as input to our algorithms to construct overlay
multicast trees.

Next, we describe additional details involving experimenta-
tion with ROMA. First, in some cases, we identified PlanetLab
hosts whose throughput appeared to be constrained by their lo-
cal network configuration (perhaps due to router capability, link
capacity, or rate limiting). For example, several hosts were un-
able to concurrently send and receive at sustained rates above
10 Mbps. We did not include measurements from these rate-
limited hosts in Table 1. Also, we disallowed these hosts from
being intermediate hosts in our experiments, but did allow them
to be leaf nodes.

At each of the hosts where we deployed ROMA, we estab-
lished a 1 MB application buffer (as in Fig. 4), primarily to
facilitate copying between upstream and downstream sockets.
Finally, as described in Section IV-A, the erasure resilient codes
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we propose in ROMA induce decoding overhead; the codes we
simulate have decoding overhead of approximately 3%. We in-
clude this decoding overhead into the ROMA throughput cal-
culations whenever we compare to direct unicast throughput
(which would not use codes).

A. Multiple Rate Reliable Multicast

Our first experiment uses the topology depicted in Fig. 7 to
validate that a single slow link does not impact the performance
either at upstream nodes, or at nodes in other regions of the tree.
Fig. 8 compares the average throughput at each host when a
1 GB transfer is performed using two different methods defined
as follows:

e ROMA: An overlay multicast tree is established to all hosts,
and the throughput is measured at each point in the multi-
cast tree.

o Unicast To Parent: For each host, we measure the through-
put of a TCP transfer directly from its parent to the host
itself. (This corresponds to a single entry in Table 1.)

The values reported are the average measurements across ten
trials. In this topology, every upstream link offers better unicast
throughput than all of its downstream links, thus the throughput
on any path from the sender to a receiver decreases monotoni-
cally. Here, the set of downstream links fanning out from ev-
ery intermediate host also have different characteristics. Fig. 8
shows that the ROMA throughputs measured by each host are
diverse, but all are similar to the throughput of a single unicast
connection to its parent node, as we desire. Clearly, slow links
do not degrade the performance of unrelated peer hosts or an-
cestors in the tree.
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Fig. 10. Host throughput with UCLA as the sender.

In Fig. 8, note also that some hosts have slightly decreased
throughput using ROMA as compared to a direct unicast con-
nection to their parents (and beyond that of 3% decoding over-
head). For example, consider the intermediaries at GT and Duke.
The unicast throughput of connections to GT and Duke from BU
were 53.9 Mbps and 40.9 Mbps respectively while the multicast
throughput of GT and Duke while running in the ROMA ex-
periment were 47.8 Mbps and 35.6 Mbps respectively. This is
primarily because the ROMA experiment is running under the
disadvantage of delivering data across all tree edges simultane-
ously. The throughput degradation comes from the effect of link
stress, which is defined as the number of identical copies of a
packet carried by a physical link in an overlay [3]. In our ex-
ample, downstream and upstream links from a single node often
share some physical links. When these shared links are a bot-
tleneck, the contention at these resources negatively impact the
performance of those overlay connections crossing the link.

These measurement results also provide agreement with our
analytical argument that the expected throughput is the mini-
mum of the throughputs along the path (and no worse). Indeed,
the throughput of each host in this topology is determined only
by the network conditions along the overlay hop to its parent
host.

A node may close the upstream connection upon completing
its reception of the original content to minimize the total number
of packets transmitted over the overlay network. In the event,
the node generates encoding symbols of its own from the full
content and continues servicing downstream connections.

In Fig. 10, we report on a similar experiment, showing the
throughput at each host in the topology depicted in Fig. 9. As
before, we see the effect of stress on links at Univ. of Arizona
and GT. Another interesting case is the throughput at Duke.
Although Duke’s upstream link from Georgia Tech has high
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Fig. 11. Throughput improvement on chains of TCP.

throughput (31.8 Mbps), the measured throughput at Georgia
Tech using ROMA is much lower (17.8 Mbps) and therefore the
measured ROMA throughput to Duke is limited to this lower
value. This experiment (and many similar experiments not pre-
sented due to space limitations) provide confirmation that the
TCP throughput of the overlay host is bounded above by the
minimum throughput across the upstream links.

B. Throughput Improvement from Chains of TCP

In the following two sections, we report on experiments in
which use of ROMA can actually improve the throughput as
compared to direct unicast (and even when the aggregate RTT
and loss rate increase). Consider the simple example in Fig. 11
derived from our Internet experiments. The throughput and RTT
from the pairwise unicast measurements between the three hosts
are as labeled. Since we were unable to directly derive the loss
rate of the TCP connection without root access, we used (1)
to compute the approximate loss rate based on the measured
throughput and the measured RTT. To doublecheck our mea-
surements, we also concurrently ran TFRC [23] on the same
path and measured the average loss rate from TFRC. Details
of our methodology and comparisons of measured loss rate and
computed loss rate are in the full version of this paper [26].

Even though both the aggregate loss rate (0.0344%) and the
aggregate round-trip time (42.2 ms) increase, the throughput to
UIUC via GT along the detour path is consistently larger than
that achieved by direct unicast from BU. Using ROMA, the mea-
sured throughput to UIUC was 37.2 Mbps, which is the mini-
mum of the throughput across the overlay links, as our model
predicts. This throughput improvement comes from the benefit
of employing chains of TCP connections.

C. Maximizing Overall Throughput

The earlier analysis and the experiments in the previous sec-
tions point to a natural method for optimizing the layout of
an application level multicast tree using ROMA: Construct the
single-source “widest path” tree, i.e., the tree that maximizes
the minimum per-hop available bandwidth to every destination.
In this section, we sketch a simple algorithm for building this
widest path tree and construct the tree for a PlanetlLab overlay
rooted at the University of Washington (depicted in Fig. 12) us-
ing end-to-end measurements from an extended version of Ta-
ble 1.

The algorithm to construct the widest path tree is a simple
variant of Dijkstra’s algorithm, which is typically used to con-
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struct single-source shortest path trees. In a standard invoca-
tion of Dijkstra’s, links have associated weights representing
propagation delay, and the algorithm repeatedly and greedily se-
lects the unvisited node closest to the source, where proximity
is measured by the sum of the weights on the path. To construct
the widest path tree, links have associated weights representing
available bandwidth (as per the entries in Table 1), and the al-
gorithm repeatedly and greedily selects the unvisited node with
the widest path from the source, where path width is measured
by the minimum of the weights on the path. The short proof that
this greedy algorithm constructs the widest path tree follows the
same reasoning as the shortest path tree argument.

The multicast tree depicted in Fig. 12 is a widest path tree
rooted at UW that we constructed using this algorithm from a
set of measurements extending Table 1. We note that the widest
path tree is not typically unique, since decisions below an un-
avoidable bottleneck link are immaterial. To build the first level
of the tree, we used the fact that the maximum available band-
width from UW to other hosts is about 39 Mbps (to UCLA is
39 Mbps, to Berkeley is 38.6 Mbps). At the second level of the
tree, we used the fact that the maximum available bandwidth
from UCLA or Berkeley to other nodes is about 21 Mbps, which
is higher than any other available bandwidth from UW. Below
these upper levels, we broke most ties arbitrarily, since the avail-
able bandwidth between all pairs of hosts not on the west coast
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Fig. 14. Throughput advantage from ROMA.

were mostly higher than 21 Mbps on Abilene.

Using this same topology, we compare the throughput of each
host in each of the following three scenarios.

» ROMA: An overlay multicast tree is established to all hosts,
and the throughput is measured at each point in the multi-
cast tree.

« Direct Unicast: The throughput is measured when the con-
tent is transferred across a single unicast connection to the
individual host.

e N * Unicast: The throughput is measured when all N hosts
simultaneously download the content via separate unicast
connections from the sender.

Comparing ROMA against direct unicast jointly demonstrates
the performance advantages derived by split TCP connections,
and the disadvantages of using an overlay infrastructure. The
comparison of ROMA against N * unicast demonstrates the ben-
efit of multicast by reducing the transmissions of many copies
of the same data on outgoing links from UW.

In Fig. 13 we depict the head-to-head comparison of our three
methods. The figure shows that even though the overlay multi-
cast generates some link stress, it is still far superior to N * uni-
cast at all nodes. We also see that in many cases, the throughput
of ROMA is better than direct unicast case and that this through-
put advantage of ROMA comes from finding the widest path to
destinations. We also sce the effect of link stress, especially at
nodes with considerable fanout, which results in ROMA having
slightly worse performance than direct unicast.

Fig. 14 depicts the relative performance of pairs of these
three methods as ratios. A ratio of 1.0 indicates no difference
in throughput, while a ratio of 2.0 indicates a two-fold speedup.
The results show that ROMA provides excellent performance
compared with the other unicast methods, and provides signifi-
cantly improved performance over a single end-to-end TCP con-
nection with surprising regularity.

D. ns Experiments

Although the experiments on Planetlab enable us to test
ROMA over the Internet, we are not able to tune network con-
ditions to validate some parts of our model. One interesting net-
work condition to evaluate the model of TCP chains is that all
connections between end systems have the same network condi-
tions. The expected throughput of each receiver in our model is
the minimum per-hop available bandwidth (2), thus all receivers
would have the similar throughput. We validate our model under

10 TCP
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® ®

Fig. 15. Chains of end hosts with the same network conditions.
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=/
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this condition using ns-2 and a topology in Fig. 15. Each con-
nection between end hosts has 44 Mbps link capacity with 10ms
link latency and is competing with 10 TCP flows, resulting in al-
most the same background traffic on each link. The application
buffer could hold 3,000 packets at a given time, where the packet
size is 512 Bytes. The average throughput of host B, host C, and
host D over 100 trials are 4.27 Mbps, 3.92 Mbps, and 3.62 Mbps
respectively. We have observed that even though the network
conditions are almost identical, the performance degradation on
adding each additional downstream connection is about 9%.

In Fig. 16 (a), we pick one of our 100 trials whose mean
rate is closest to the average throughput, and plot the congestion
window (CWND) and the number of packets in the application
buffer of host B to see why the performance degradation occurs.
Time elapses on the x-axis, while the value of y-axis indicates
the number of packet. The number of packets in the application
buffer is measured at each time the host tries to send a packet to
the downstream host. If the number of packets in the applica-
tion buffer of host B is larger than CWND of B, the downstream
TCP connection (host B to host C) will behave like a TCP driven
by an application that always has data to send. However, if this
value is less than the congestion window size, then the interme-
diate host B cannot send any packet and has to wait for incoming
packets from the upstream connection (host A to host B) to send.
If the intermediate host B experiences this case, the downstream
connection (host B to host C) is not only affected by its network
conditions, but also its upstream connection ¢host A to host B).

This kind of performance degradation may happen in the fol-
lowing conditions. If the upstream connection experiences TCP
timeout, then the congestion window of upstream TCP con-
nection (host A) is dropped to 1. Thus the timeout of the up-
stream TCP connection will reduce the incoming rate of host B
while the sending rate of B is determined on the network con-
dition of downstream connection (host B to host C). The down-
stream connection will consume packets in the application level
buffer and the intermediate host B may have no packet to send
at a given time. This can cause the performance degradation
of downstream connection. In Fig. 16(b), we plot the conges-
tion window (CWND) of host A. In Fig. 16(c), we zoom in the
Fig. 16(a). At 14 seconds in Fig. 16(b), the host A experiences
the timeout and the CWND drops to 1. In Fig. 16(c), the host
B begins to consume packets in the application buffer at 14.2
seconds and the number of packets in the application buffer be-
comes less than the CWND at 14.9 seconds, so it has to wait the
incoming packets to send to the downstream host. The number
of packets in the application buffer becomes larger than CWND
at 17 seconds. From 15 seconds to 17 seconds, the sending rate
of host B to C is constrained by the incoming rate of host B.
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Fig. 17. Throughput of each host on the different buffer size.

This causes the performance degradation of host C. This kind
of timeout effect occurs couple times (at 26.7 seconds and 62.2
seconds) and they last about 2 seconds. A low incoming rate also
makes the application buffer to be drained and causes the perfor-
mance degradation of downstream node (around 47 seconds, 76
seconds, and 86 seconds).

In Fig. 17, we vary the application buffer size with 40 Mbps
link capacity, 30 ms link latency, 0.0005 loss probability for all
links between end hosts, and 512 B packet size. We increase the
buffer size by 1 KBytes. Fig. 17 shows the average throughput
over 100 trials on each buffer size. The value of X-axis is the
size of buffer, which includes the TCP sending buffer and the
application buffer. The small buffer size induces less throughput
of each downstream node. However, at some point the effect of
the buffer size increase is negligible.

We increase the depth of TCP chains to examine the perfor-
mance degradation on each additional downstream link. We ap-
ply the network parameters (link capacity, latency, loss probabil-
ity) used in Fig. 17 experiment. We plot the average throughput
of each TCP on 200 chains of TCP connections over 20 trials in
Fig. 18. We have observed the interesting result that each addi-
tional TCP connection reduces the performance exponentially.
We plot log-log scale of Fig. 18 in Fig. 19.

The work in [20] gives more mathematical analysis on chains
of TCP, where the throughput of overlay node is the minimum
of TCP throughput along the path. However, the performance
degradation in the situation described above was not considered
and presented. The analysis was based on the assumption that a

Fig. 18. Throughput on the different depth of TCP connection.

0.7
0.65 | .

Throughpui -

o
o
.

055 | .
05} K
045 |
04}
035 |
03}
0.25
0

Log(Throughput (Mbit/s))

0.5 1 1.5 2 25

Log(Depth of TCP)

Fig. 19. Log-log plot of throughput on the different depth of TCP con-
nection.

sender is not constrained by any upstream node. Our future work
is to investigate the performance of TCP connections in more
detail, and give the mathematical analysis including exponential
performance decrease showed in Fig. 18.

VII. CONCLUSION

This paper presented ROMA, a new architecture for reliable
distribution of large content across an overlay network using
TCP. ROMA enables multiple-rate reception, with individual
rates that match the end-to-end available bandwidth along the
path, while using a minimal amount of resources at the appli-
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cation layer. A key component that our method employs is the
use of erasure-resilient codes to provide reliability. The degree
of freedom that the use of codes provides enables us to loosen
the tight coupling of TCP connections that is needed in other de-
signs to provide reliability, but also limits performance. The use
of a digital fountain approach in our architecture also provides
us with many additional benefits: Small buffers, the ability to
adaptively reconfigure the topology, and the ability to speed up
downloads with collaborative peer-to-peer transfers.

Another contribution of our work is the analysis of chains of
loosely coupled TCP connections that are established using our
approach. We provide a simple model for the expected through-
put across a chain of TCPs given per-hop RTTs and per-hop loss
rates, along with validation using Internet experimentation. Our
analysis and experimental results show that TCP chains offer
an opportunity to increase performance by finding an alternative
overlay path that is “wider” (as far as TCP is concerned) than
the default path provided by IP. This observation also guides the
construction of multicast trees that ROMA uses.
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