KIPS Transactions on Software and Data Engineering
/
v.10
no.6
/
pp.235-242
/
2021
In this work, we develop a Korean dependency parser based on a stack-pointer network that consists of a pointer network and an internal stack. The parser has an encoder and decoder and builds a dependency tree for an input sentence in a depth-first manner. The encoder of the parser encodes an input sentence, and the decoder selects a child for the word at the top of the stack at each step. Since the parser has the internal stack where a search path is stored, the parser can utilize information of previously derived subtrees when selecting a child node. Previous studies used only a grandparent and the most recently visited sibling without considering a subtree structure. In this paper, we introduce graph attention networks that can represent a previously derived subtree. Then we modify our parser based on the stack-pointer network to utilize subtree information produced by the graph attention networks. After training the dependency parser using Sejong and Everyone's corpus, we evaluate the parser's performance. Experimental results show that the proposed parser achieves better performance than the previous approaches at sentence-level accuracies when adopting 2-depth graph attention networks.
The purpose of this study was to construct land cover maps using a deep learning model and to select the optimal deep learning model for land cover classification by adjusting the dataset such as input image size and Stride application. Two types of deep learning models, the U-net model and the DeeplabV3+ model with an Encoder-Decoder network, were utilized. Also, the combination of the two deep learning models, which is an Ensemble model, was used in this study. The dataset utilized RapidEye satellite images as input images and the label images used Raster images based on the six categories of the land use of Intergovernmental Panel on Climate Change as true value. This study focused on the problem of the quality improvement of the dataset to enhance the accuracy of deep learning model and constructed twelve land cover maps using the combination of three deep learning models (U-net, DeeplabV3+, and Ensemble), two input image sizes (64 × 64 pixel and 256 × 256 pixel), and two Stride application rates (50% and 100%). The evaluation of the accuracy of the label images and the deep learning-based land cover maps showed that the U-net and DeeplabV3+ models had high accuracy, with overall accuracy values of approximately 87.9% and 89.8%, and kappa coefficients of over 72%. In addition, applying the Ensemble and Stride to the deep learning models resulted in a maximum increase of approximately 3% in accuracy and an improvement in the issue of boundary inconsistency, which is a problem associated with Semantic Segmentation based deep learning models.
Journal of the Korean Association of Geographic Information Studies
/
v.27
no.1
/
pp.115-127
/
2024
This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.43
no.7
s.349
/
pp.50-57
/
2006
Low-density parity-check (LDPC) codes are recently emerged due to its excellent performance. However, the parity check (H) matrices of the previous works are not adequate for hardware implementation of encoders or decoders. This paper proposes a hybrid parity check matrix which is efficient in hardware implementation of both decoders and encoders. The hybrid H-matrices are constructed so that both the semi-random technique and the partly parallel structure can be applied to design encoders and decoders. Using the proposed methods, the implementation of encoders can become practical while keeping the hardware complexity of the partly parallel decoder structures. An encoder and a decoder are designed using Verilog-HDL and compared with the previous results.
In H.264/AVC, if each block is quantized with a adaptive quantization parameter(QP) regardless of the characteristics of a block, it could be the deterioration of the picture quality. In this paper, an adaptive block-based QP selection method is proposed in order to improve picture quality by utilizing the bit amounts of the zigzag-scanned integer transform coefficients of the neighboring blocks and changing the QP value in the current block. The proposed method works in the same way as the encoder and decoder without transmitting the change of QP value to the decoder side. The experimental results show that the proposed method achieves a gain of about $0.1\sim0.3dB$ compared with H.264/AVC.
In this papar, we propose a new motion estimation and coding technique using adaptive motion vector resolution. Currently, HEVC encodes a video using 1/4 motion vector resolution. If there are high texture regions in a picture, HEVC can't get a performance enough. So, we insert additional 1-bit flag meaning whether motion vector resolution is 1/4 or 1/8 in PU syntax. Therefore, decoder can recognize the transmitted motion vector resolution. Experimental results show that maximum coding efficiency gain of the proposed method is up to 5.3% in luminance and 7.9% in chrominance. Average computional time complexity is increased about 33% in encoder and up to 5% in decoder.
Journal of the Institute of Electronics Engineers of Korea TC
/
v.37
no.9
/
pp.1-10
/
2000
This paper proposes symbol decoding schemes combined with channel estimation techniques for coded orthogonal frequency division multiplexing (COFDM) systems in fading channels. sThe proposed symbol decoding schemes are consisted of a symbol decoding technique and channel estimation techniques. The symbol decoding based on Viterbi algorithm is achieved by matching the length of branch word from encoder trellis to the codeword length of symbol candidate on decoder trellis. Three combination schemes are described and their error performances are compared. The first scheme is to combine a symbol decoding technique with a training channel estimation technique. The second scheme joins a decision directed channel estimation technique to the first scheme. The time varying channel transfer functions are tracked by the decision directed channel estimation technique and the channel transfer functions used in the symbol decoder are updated every COFDM symbol. Finally, In order to reduce the effect of additive white Gaussian noise (AWGN) between adjacent subchannels, deinterleaved average channel estimation technique is combined. The error performances of the three schemes are significantly improved being compared with that of zero forcing equalizing schemes.
The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.2C
/
pp.262-271
/
2004
There are channel errors when video data are transmitted between encoder and decoder. These channel errors would make decoded image incorrect, so it is very important to detect and recover channel errors. This paper proposes a method of error detection and recovery by hiding specific information into video bitstream using fragile watermark and checking it later. The proposed method requires no additional bits into compressed bitstream since it embeds a user-specific data pattern in the least significant bits of LEVELs in VLC codewords. The decoder can extract the information to check whether the received bitstream has an error or not. We also propose to use this method to embed essential data such as motion vectors that can be used for error recovery. The proposed method can detect corrupted MBs that usually escape the conventional syntax-based error detection scheme. This proposed method is quite simple and of low complexity. So the method can be applied to multimedia communication system in low bitrate wireless channel.
Kim, Tae-June;Kim, Jee-Hong;Yun, Jung-Hwan;Bae, Byung-Kyu;Kim, Dong-Wook;Yoo, Ji-Sang
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.6C
/
pp.450-458
/
2008
In this paper, we propose a real-time stereoscopic display system based on H.264/AVC. We initially acquire stereo-view images from stereo web-cam using OpenCV library. The captured images are converted to YUV 4:2:0 format as a preprocess. The input files are encoded by stereo-encoder, which has a proposed estimation structure, with more than 30 fps. The encoded bitstream are decoded by stereo-decoder reconstructing left and right images. The reconstructed stereo images are postprocessed by stereoscopic image synthesis technique to offer users more realistic images with 3D effect. Experimental results show that the proposed system has better encoding efficiency compared with using a conventional stereo CODEC(coder and decoder) and operates with real-time processing and low complexity suitable for an application with a mobile environment.
The Journal of Korean Institute of Communications and Information Sciences
/
v.35
no.7C
/
pp.611-617
/
2010
In this paper, we investigate the performances of the serial concatenated convolutional codes (SCCC) and low-density parity-check (LDPC) codes on perpendicular magnetic recording (PMR) channels. We discuss the performance of two systems when user bit-densities are 1.7, 2.0, 2.4 and 2.8, respectively. The SCCC system is less complex than LDPC system. The SCCC system consists of recursive systematic convolutional (RSC) codes encoder/decoder, precoder and random interleaver. The decoding algorithm of the SCCC system is the soft message-passing algorithm and the decoding algorithm of the LDPC system is the log domain sum-product algorithm (SPA). When we apply the iterative decoding between channel detector and the error control codes (ECC) decoder, the SCCC system is compatible with the LDPC system even at the high user bit density.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.