• 제목/요약/키워드: encoder accuracy

검색결과 205건 처리시간 0.021초

디지털 아날로그 혼합형 고정도 엔코더 개발 (A novel encoder of digital and analog hybrid type for servo control with high-precision resolution)

  • 홍정표;박성준;권순재
    • 전력전자학회논문지
    • /
    • 제8권6호
    • /
    • pp.512-518
    • /
    • 2003
  • 반도체 장비나 산업용 정밀 머신 툴 등에서 고정밀 위치제어는 매우 중요하다. 고정밀 위치제어장치와 같은 미소단위로 이동하는 물체의 이동 거리나 위치를 측정하는 다양한 기기나 반도체 제조장치 등에서 고정밀도로 위치제어를 행하는 기기들의 위치 변위 검출에 대한 정확도는 제어기의 성능을 좌우하는 중요한 요소 중의 하나가 된다 본문에서는 기존의 저가형 광학식 엔코더의 전기적 회로 부분의 변형으로 디지털 신호 및 회절격자의 회절량에 대한 아날로그 신호를 기초로 하여 마이크로프로세스의 협력으로 고정도의 위치를 얻을 수 있는 새로운 방식의 위치검출기법을 제안하였다. 또한 실험을 통하여 그 타당성을 검증하였다.

모바일 로봇을 위한 학습 기반 관성-바퀴 오도메트리 (Learning-based Inertial-wheel Odometry for a Mobile Robot)

  • 김명수;장근우;박재흥
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.427-435
    • /
    • 2023
  • This paper proposes a method of estimating the pose of a mobile robot by using a learning model. When estimating the pose of a mobile robot, wheel encoder and inertial measurement unit (IMU) data are generally utilized. However, depending on the condition of the ground surface, slip occurs due to interaction between the wheel and the floor. In this case, it is hard to predict pose accurately by using only encoder and IMU. Thus, in order to reduce pose error even in such conditions, this paper introduces a pose estimation method based on a learning model using data of the wheel encoder and IMU. As the learning model, long short-term memory (LSTM) network is adopted. The inputs to LSTM are velocity and acceleration data from the wheel encoder and IMU. Outputs from network are corrected linear and angular velocity. Estimated pose is calculated through numerically integrating output velocities. Dataset used as ground truth of learning model is collected in various ground conditions. Experimental results demonstrate that proposed learning model has higher accuracy of pose estimation than extended Kalman filter (EKF) and other learning models using the same data under various ground conditions.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

Machining Center의 공간정도 측정장치의 개발 (Developement of Measuring Units of Space Motion Accuracy in Machining Center)

  • 김영석;남궁석
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.37-47
    • /
    • 1995
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan, Circular test Method by Knapp and $r^{-{\theta} }$ Method by Tsutsumi etc., but these methods are all 2-dimentional measuring methods on plane. These simple methods of circular motion accuracy test of NC machine tools have been studied by many reserchers as above, but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units and the spindle of machining center. In this paper, in use of 2 rotary encoders and 1 magnetic type linear scale with resolution of 0.5 .mu. m, it has become possible for measuring of 3 dimentional space motion accuracy.

  • PDF

천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN (OrdinalEncoder based DNN for Natural Gas Leak Prediction)

  • 홍고르출;이상무;김미혜
    • 한국융합학회논문지
    • /
    • 제10권10호
    • /
    • pp.7-13
    • /
    • 2019
  • 대부분의 천연가스(NG)는 공기 중으로 누출 되며 그중에서도 메탄가스의 누출은 기후에 많은 영향을 준다. 미국 도시의 거리에서 메탄가스 누출 데이터를 수집하였다. 본 논문은 메탄가스누출 정도를 예측하는 딥러닝(Deep Neural Network)방법을 제안하였으며 제안된 방법은 OrdinalEncoder(OE) 기반 K-means clustering과 Multilayer Perceptron(MLP)을 활용하였다. 15개의 특징을 입력뉴런과 오류역전파 알고리즘을 적용하였다. 데이터는 실제 미국의 거리에서 누출되는 메탄가스농도 오픈데이터를 활용하여 진행하였다. 우리는 OE 기반 K-means알고리즘을 적용하여 데이터를 레이블링 하였고 NG누출 예측을 위한 정규화 방법 OE, MinMax, Standard, MaxAbs. Quantile 5가지 방법을 실험하였다. 그 결과 OE 기반 MLP의 인식률이 97.7%, F1-score 96.4%이며 다른 방법보다 상대적으로 높은 인식률을 보였다. 실험은 SPSS 및 Python으로 구현하였으며 실제오픈 데이터를 활용하여 실험하였다.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법 (Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration)

  • 홍고르출;조겨리;김미혜
    • 한국융합학회논문지
    • /
    • 제13권3호
    • /
    • pp.33-41
    • /
    • 2022
  • 본 논문에서는 다중 요인을 고려한 천연 가스 누출 정도 예측을 위해 관련 요인을 포함하는 기상청 자료와 천연가스 누출 자료를 통합하고, 요인 분석을 기반으로 중요 특성을 선택하는 머신러닝 기법을 제안한다. 제안된 기법은 3단계 절차로 구성되어 있다. 먼저, 통합 데이터 셋에 대해 선형 보간법을 수행하여 결측 데이터를 보완하는 전처리를 수행한다. 머신러닝 모델 학습 최적화를 위해 OrdinalEncoder(OE) 기반 정규화와 함께 요인 분석을 사용하여 필수 특징을 선택하며, 데이터 셋은 k-평균 클러스터링으로 레이블을 지정한다. 최종적으로 K-최근접 이웃, DT(Decision Tree), RF(Random Forest), NB(Naive Bayes)의 네 가지 알고리즘을 사용하여 가스 누출 수준을 예측한다. 제안된 방법은 정확도, AUC, 평균 표준 오차(MSE)로 평가되었으며, 테스트 결과 OE-F 전처리를 수행한 경우 기존 기법에 비해 성공적으로 개선되었음을 보였다. 또한 OE-F 기반 KNN(OE-F-KNN)은 95.20%의 정확도, 96.13%의 AUC, 0.031의 MSE로 비교 알고리즘 중 최고 성능을 보였다.

시각적 어텐션을 활용한 입술과 목소리의 동기화 연구 (Lip and Voice Synchronization Using Visual Attention)

  • 윤동련;조현중
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.166-173
    • /
    • 2024
  • 본 연구에서는 얼굴 동영상에서 입술의 움직임과 음성 간의 동기화 탐지 방법을 제안한다. 기존의 연구에서는 얼굴 탐지 기술로 얼굴 영역의 바운딩 박스를 도출하고, 박스의 하단 절반 영역을 시각 인코더의 입력으로 사용하여 입술-음성 동기화 탐지에 필요한 시각적인 특징을 추출하였다. 본 연구에서는 입술-음성 동기화 탐지 모델이 음성 정보의 발화 영역인 입술에 더 집중할 수 있도록 사전 학습된 시각적 Attention 기반의 인코더 도입을 제안한다. 이를 위해 음성 정보 없이 시각적 정보만으로 발화하는 말을 예측하는 독순술(Lip-Reading)에서 사용된 Visual Transformer Pooling(VTP) 모듈을 인코더로 채택했다. 그리고, 제안 방법이 학습 파라미터 수가 적음에도 불구하고 LRS2 데이터 세트에서 다섯 프레임 기준으로 94.5% 정확도를 보임으로써 최근 모델인 VocaList를 능가하는 것을 실험적으로 증명하였다. 또, 제안 방법은 학습에 사용되지 않은 Acappella 데이터셋에서도 VocaList 모델보다 8% 가량의 성능 향상이 있음을 확인하였다.

Arabic Stock News Sentiments Using the Bidirectional Encoder Representations from Transformers Model

  • Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.113-123
    • /
    • 2024
  • Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.

Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석 (Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제29권3호
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.