• Title/Summary/Keyword: encoder accuracy

Search Result 205, Processing Time 0.025 seconds

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Correction of TDC Position for Engine Output Measuring in Marine Diesel Engines (선박용 디젤엔진의 출력산정을 위한 TDC 위치보정에 관한 연구)

  • Jung, Kyun-Sik;Choi, Jun-Young;Jeong, Eun-Seok;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • The accurate engine output is basically one of important factors for the analysis of engine performance. Nowadays in-cylinder pressure analysis in internal combustion engine is also an indispensable tool for engine research and development, environment regulation and maintenance of engine. Here, it is essential more than anything else to find the correct TDC(Top Dead Center) position for the accuracy of engine output for diesel engine. Therefore this study is to analyze affecting factors to TDC position in 2-stroke large low speed engine and to suggest new method for determining correct TDC position. In the previous paper, it was mentioned that the accuracy of engine output is influenced by the determination of exact TDC position, and that 'Angle based sampling' method is better than 'Time based sampling' method in terms of precision. It was confirmed that there is 'Loss of angle', which is a difference between compression pressure peak and real TDC caused by heat loss and blow by of gas leakage. Consequently we invented new method, called "An improved method of time based sampling", which can obtain the correct engine output. The results by this method with compensating loss of angle was shown the same result by the 'Angle based sampling' method in encoder setting cylinder. This study is to suggest the new measuring method of exact engine output, and to examnine the reliance on the outcome.

Style-Based Transformer for Time Series Forecasting (시계열 예측을 위한 스타일 기반 트랜스포머)

  • Kim, Dong-Keon;Kim, Kwangsu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.579-586
    • /
    • 2021
  • Time series forecasting refers to predicting future time information based on past time information. Accurately predicting future information is crucial because it is used for establishing strategies or making policy decisions in various fields. Recently, a transformer model has been mainly studied for a time series prediction model. However, the existing transformer model has a limitation in that it has an auto-regressive structure in which the output result is input again when the prediction sequence is output. This limitation causes a problem in that accuracy is lowered when predicting a distant time point. This paper proposes a sequential decoding model focusing on the style transformation technique to handle these problems and make more precise time series forecasting. The proposed model has a structure in which the contents of past data are extracted from the transformer-encoder and reflected in the style-based decoder to generate the predictive sequence. Unlike the decoder structure of the conventional auto-regressive transformer, this structure has the advantage of being able to more accurately predict information from a distant view because the prediction sequence is output all at once. As a result of conducting a prediction experiment with various time series datasets with different data characteristics, it was shown that the model presented in this paper has better prediction accuracy than other existing time series prediction models.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Content-based Korean journal recommendation system using Sentence BERT (Sentence BERT를 이용한 내용 기반 국문 저널추천 시스템)

  • Yongwoo Kim;Daeyoung Kim;Hyunhee Seo;Young-Min Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.37-55
    • /
    • 2023
  • With the development of electronic journals and the emergence of various interdisciplinary studies, the selection of journals for publication has become a new challenge for researchers. Even if a paper is of high quality, it may face rejection due to a mismatch between the paper's topic and the scope of the journal. While research on assisting researchers in journal selection has been actively conducted in English, the same cannot be said for Korean journals. In this study, we propose a system that recommends Korean journals for submission. Firstly, we utilize SBERT (Sentence BERT) to embed abstracts of previously published papers at the document level, compare the similarity between new documents and published papers, and recommend journals accordingly. Next, the order of recommended journals is determined by considering the similarity of abstracts, keywords, and title. Subsequently, journals that are similar to the top recommended journal from previous stage are added by using a dictionary of words constructed for each journal, thereby enhancing recommendation diversity. The recommendation system, built using this approach, achieved a Top-10 accuracy level of 76.6%, and the validity of the recommendation results was confirmed through user feedback. Furthermore, it was found that each step of the proposed framework contributes to improving recommendation accuracy. This study provides a new approach to recommending academic journals in the Korean language, which has not been actively studied before, and it has also practical implications as the proposed framework can be easily applied to services.

Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms (변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측)

  • Sanghyun Bae;Byounggu Choi
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • Recently, many studies have been conducted to increase the accuracy of stock price prediction by analyzing candlestick charts using artificial intelligence techniques. However, these studies failed to consider the time-series characteristics of candlestick charts and to take into account the emotional state of market participants in data learning for stock price prediction. In order to overcome these limitations, this study produced input data by combining volatility index and candlestick charts to consider the emotional state of market participants, and used the data as input for a new method proposed on the basis of combining variantion autoencoder (VAE) and attention mechanisms for considering the time-series characteristics of candlestick chart. Fifty firms were randomly selected from the S&P 500 index and their stock prices were predicted to evaluate the performance of the method compared with existing ones such as convolutional neural network (CNN) or long-short term memory (LSTM). The results indicated the method proposed in this study showed superior performance compared to the existing ones. This study implied that the accuracy of stock price prediction could be improved by considering the emotional state of market participants and the time-series characteristics of the candlestick chart.

A Perceptual Rate Control Algorithm with S-JND Model for HEVC Encoder (S-JND 모델을 사용한 주관적인 율 제어 알고리즘 기반의 HEVC 부호화 방법)

  • Kim, JaeRyun;Ahn, Yong-Jo;Lim, Woong;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.929-943
    • /
    • 2016
  • This paper proposes the rate control algorithm based on the S-JND (Saliency-Just Noticeable Difference) model for considering perceptual visual quality. The proposed rate control algorithm employs the S-JND model to simultaneously reflect human visual sensitivity and human visual attention for considering characteristics of human visual system. During allocating bits for CTU (Coding Tree Unit) level in a rate control, the bit allocation model calculates the S-JND threshold of each CTU in a picture. The threshold of each CTU is used for adaptively allocating a proper number of bits; thus, the proposed bit allocation model can improve perceptual visual quality. For performance evaluation of the proposed algorithm, the proposed algorithm was implemented on HM 16.9 and tested for sequences in Class B and Class C under the CTC (Common Test Condition) RA (Random Access), Low-delay B and Low-delay P case. Experimental results show that the proposed method reduces the bit-rate of 2.3%, and improves BD-PSNR of 0.07dB and bit-rate accuracy of 0.06% on average. We achieved MOS improvement of 0.03 with the proposed method, compared with the conventional method based on DSCQS (Double Stimulus Continuous Quality Scale).

A Study on Robust and Precise Position Control of PMSM under Disturbance Variation (외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구)

  • Lee, Ik-Sun;Yeo, Won-Seok;Jung, Sung-Chul;Park, Keon-Ho;Ko, Jong-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.