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Abstract 

 
Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines 
optimal, safe paths considering physical limitations, environmental factors, and agent 
interactions. Recent advancements in trajectory planning and future location prediction stem 
from rapid progress in machine learning and optimization algorithms. In this paper, we 
proposed a novel framework for Spatial-temporal transformer-based feed-forward neural 
networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is 
trained on trajectory data to generate embeddings that capture the high-level features of 
different trajectories. These embeddings can then be used as input to a transformer-based 
trajectory planning model, which can generate trajectories for new objects based on the 
embeddings of similar trajectories in the training data. In the next step, distant regions, we 
embedded feedforward network is responsible for generating the distant trajectories by taking 
as input a set of features that represent the object's current state and historical data. One 
advantage of using feedforward networks for distant trajectory planning is their ability to 
capture long-term dependencies in the data. In the final step of forecasting for future locations, 
the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are 
encoded utilizing location-based social networks (LBSN) based on visiting semantic locations. 
The model has been specially trained to forecast future locations using precise longitude and 
latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, 
it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-
of-the-art methods. 
 
 
Keywords: Intelligent Transportation System, trajectory planning, future location, 
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1. Introduction 

Citywide trajectory planning with future location is an important problem in the field of 
transportation and urban planning. The goal of this problem is to generate optimal trajectories 
for a fleet of vehicles navigating through a city, aiming to reach specific future locations in the 
most efficient and timely manner possible. This problem is becoming increasingly important 
with the rise of shared mobility services such as ride-sharing and autonomous vehicles, which 
require efficient trajectory planning algorithms to operate effectively. Moreover, citywide 
trajectory planning is critical for reducing traffic congestion and improving the overall 
efficiency of transportation systems, which has significant economic and environmental 
implications [1]. Citywide trajectory planning with future locations involves several 
challenges, including the need to model complex traffic patterns and optimize trajectories in 
real-time based on changing traffic and weather conditions. Additionally, it requires the use of 
advanced machine learning and optimization techniques, as well as a deep understanding of 
urban transportation systems and traffic engineering principles. There are some significant 
problems with trajectory planning and future location as follows: 

 
• Certain urban regulations, such as Beijing's driving restriction policy [1], impose 

limitations on traffic flow. Under this policy, certain drivers are authorized to operate 
within specified areas. For instance, if a region is designated exclusively for taxi 
drivers and is a popular destination for passengers, these drivers may be restricted 
from taking orders in that area. Consequently, this restriction can lead to resource 
inefficiency. 

• Few taxi drivers prioritize passengers travelling to familiar areas for their convenience. 
Conversely, some drivers are disinclined to accept short-distance trips due to their 
limited profitability. When most passengers' destinations are either close to the pick-
up location or fall outside the driver's regular operating regions, they may decline such 
requests. 

• If a driver is directed to an area where most passengers are heading to unfamiliar 
destinations, they may experience delays even when relying on GPS navigation. These 
behaviors among taxi drivers can diminish passenger satisfaction levels and reduce 
the overall operational efficiency of the taxi market. 

 
 Trajectory planning and future location prediction are important research areas in 

transportation and autonomous vehicle systems. Recent studies have explored various 
approaches to trajectory planning and future location prediction using machine learning and 
other techniques. In A Survey on Urban Trajectory Prediction [2] provides an overview of 
research on trajectory prediction in urban environments. This survey discusses various 
approaches to trajectory prediction, including data-driven methods that use machine learning 
and deep learning techniques. The authors highlight the importance of future location 
prediction in trajectory planning and discuss the challenges in accurately predicting 
destinations. The authors propose a data-driven approach [3] to future location prediction and 
trajectory planning that uses a combination of historical and real-time traffic data. The 
approach incorporates a machine learning-based next-destination prediction model and a 
genetic algorithm-based trajectory planning algorithm. The authors demonstrate the 
effectiveness of their approach through experiments on real-world urban transportation data. 

 In [4], the authors propose a trajectory planning framework that leverages real-time traffic 
data and vehicle-to-vehicle communication to generate optimized trajectories for connected 
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vehicles in a citywide setting. The framework uses a machine learning-based next-destination 
prediction model to improve accuracy of trajectory planning. The authors evaluate their 
approach through simulations and demonstrate its effectiveness in reducing travel time and 
fuel consumption. In [5], we propose a trajectory prediction method that uses multi-source 
data, including road network data, vehicle sensor data, and real-time traffic data, to predict 
trajectories for autonomous vehicles in urban environments. The method incorporates a 
machine learning-based next-destination prediction model to improve trajectory prediction 
accuracy. The authors demonstrate the effectiveness of their approach through experiments on 
real-world urban transportation data. 

 To target the limitations, in this paper, we proposed a novel Spatial-temporal transformer-
based feed-forward neural network (STTFFNs); the main objective of this model is to predict 
the future location and planning through the local and remote dependencies for the first time. 
In this work, the transformer model learns and is memorized with feed-forward network (FFD) 
citywide trajectories. In the end, the proposed model is based on the datasets that belong to 
real taxi trajectories. To conduct an extensive experiment on datasets, the results of the 
proposed model focus on both regional correlations and achieve a minimum error of 40% km. 
The results illustrated that this model outperformed the future location compared to existing 
models.    
 

We have made the following contributions to this paper as follows: 
 
• Our paper presents a novel deep learning model called the Spatial-temporal 

transformer-based feedforward neural network (STTFFN), which is capable of 
capturing long-range dependencies in spatial-temporal domains. The STTFFN model 
consists of units such as encoder and decoder that leverage the transformer 
architecture. Our approach aims to enhance the accuracy of predicting taxi drop-off 
locations by considering the driver's historical trajectory. To achieve this, we utilized 
the location-based social network (LBSN) API and FourSquare data to encode the 
spatial information of relevant semantic sites. Our proposed model outperforms 
existing methods in predicting future taxi drop-off locations. 

• In this research, we design a spatial-temporal-based transformer that concurrently 
captures local and distant dependencies in order to forecast future location and 
trajectory planning. The framework design is built on a transformer-based skip-gram 
model, which allows us to record local dependencies and learn about spatial 
coordinate regularities through historical trajectories. The skip-gram model is used in 
conjunction with a transformer to determine the degree of similarity between the local 
areas. 

• The feed-forward networks (FFNs) encode the trajectories obtained from GPS 
sequences into a fixed-length vector and then used cosine distance to determine the 
mean error and forecast the distant decencies. 

• The extensive tests were conducted on two publicly available datasets: Manhattan and 
Porto. The experimental findings demonstrated that the proposed model outperforms 
other models. 

 
 The structure of our work is as follows: In Section 2, we provide a review of related works 

from both traditional and deep learning perspectives. Section 3 discusses the preliminaries, 
where we define key terms and present the problem statement. Section 4 describes our 
methodology and the various parts of our framework, with a focus on the novelty of our 
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approach. In Section 5, we present the empirical study, including a description of the dataset 
and experimental configuration. We also discuss the implications of our approach from 
different perspectives. Finally, in Section 7, we provide a conclusion summarizing our work 
and discussing potential avenues for future research. 

2. Related Work  
 A comprehensive examination of the relevant fields of study will be conducted to gain a 

thorough understanding of the matter. This will involve a thorough review of diverse literature 
sources such as books, journals, and conference papers that employ different methodologies. 
Approaches and strategies relevant to predicting the next destination will be scrutinized. 

2.1 Trajectories Mining methods 
 In today's world, various GPS-enabled vehicles like taxis, buses, ships, and airplanes have 

become a common part of our daily lives. For instance, a significant number of vehicles in 
major cities possess GPS sensors that allow them to record time-stamped locations at fixed 
intervals. This location reports result in a plethora of spatial trajectories that can be leveraged 
for resource allocation. To enhance the precision of predicting future locations, incorporating 
semantic details of the places visited by individuals along with their location data was 
suggested by[6]. The proposed approach revolves around the idea of semantic trajectories, 
which depict the movement of an individual as a succession of locations annotated with 
semantic details. To simplify the forecasting of the subsequent location using semantic 
trajectories, the authors have formulated a two-part system known as Seman-Predict.The 
online mining module of Seman-Predict extracts semantic trajectories from raw data by 
initially determining the stopping points of a trajectory [7][8]. These stopping points indicate 
locations where the user has spent a specific duration of time. The trajectory data presents 
various possibilities for scrutinizing the movement patterns of mobile entities[9]. To 
understand human behavior, it is crucial to recognize their movement patterns. Extracting the 
high-level semantics of these patterns, which allow for inferring the underlying objectives or 
tasks of moving objects, remains a significant challenge in this domain. 

 The paper by [10] introduced a method to predict the endpoint of a trajectory based on a 
partially observed sub-trajectory. They divided the space into cells and modeled the transition 
probability between adjacent cells using a first-order Markov model. Another study revisited 
the problem related to RNNs. Two studies[11], proposed a Bayesian model that can predict a 
vehicle's future movement on a road network. Once again, the spatial transition was modeled 
using a first-order Markov model. [12] explored the feasibility of modeling trajectories with 
RNNs and assumed that accurate destination road segments for trips are known. They 
discovered their representations to assist with route decision-making since the Markov model 
necessitates explicit dependency assumptions and is not well-suited for accounting for long-
term interdependence. When working with low-sampling-rate trajectories, it can be 
challenging to compute similarity because a fragmented trajectory may correspond to various 
possible paths. To address this problem, [13] proposed using hidden Markov models to learn 
the transition patterns among a set of spatial objects based on their historical trajectories. 
Sparse trajectories are then aligned with these spatial objects to compute similarities. An 
alternative solution was proposed by [14] using a seq2seq-based model that encodes the most 
probable route into the trajectory representation, thus resolving the aforementioned issue. 
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2.2 Future Destination Methods 
 In this section of the literature review, different approaches for location forecasting have 

been explored. With the increasing use of mobile devices and wireless networks, location-
based services (LBS) [15] have become an area of growing interest. One of the essential tasks 
in LBS is next location prediction, which anticipates a user's next location based on their 
previous location history. Predictive models for location-based services (LBS) are essential 
for providing proactive assistance to users in an ever-changing environment. Individuals tend 
to exhibit a high degree of regularity in their mobility behaviour, visiting a limited number of 
locations and travelling between them in a regular pattern[16][17]. These mobility patterns 
can be characterized as temporal, periodic, or sequential.The increasing availability and 
popularity of mobile technologies, such as positioning, computing, and communication, has 
led researchers to realize the potential of utilizing mobility patterns to forecast the movement 
of objects in the future. This predictive system has broad applications, including transportation 
research for urban development, optimization of data phone networks, and improvements to 
location-based services (LBS). The next-generation mobile network operator applications 
have various fundamental components, including collecting users' current locations and the 
transition of locations, anticipating their future destinations, providing location-specific 
information, and managing relevant communication requests[18]. The transition from one 
location to another is a typical human behavior that can be utilized to generate end-to-end user 
movement trajectories [19]. Next-place forecasts are considered as the basic unit for 
generating these trajectories, which can be inferred using previous trace data. 

To tackle these issues, we proposed a novel Spatial-temporal Transformer-based 
Feedforward Neural Network (STTFFN) to tackle these challenges. The primary objective of 
this model is to forecast future destinations and plan based on both local and distant 
dependencies. 

3. Preliminaries  
In this section briefly explains the passenger pickupoff/dropoff prediction definitions and 

problem statement. 
•  Definition 1:  There are city areas with many distinct locations in terms of semantic 

meanings and varied granularities. In this study, the entire city is split  M × N  grid 
map into longitude and latitude. The regions of a city are designated by the letters R. 
They are expressed as the i − th row and j − th column of the grid map R(i, j). 

• Definition 2: Each taxi trip must be documented using the following tuples:            
�logpickup, latpickup, logdropoff, latdropoff, tpickup, tdropoff� ,             where 
logpickup, latpickup, tpickup   is the pickup longitude and latitude in time period t. 
Similarly, logdropoff, latdropoff, tdropoff   is the drop-off longitude, latitude in time 
interval t. 

• Definition 3: Suppose a taxi driver ℵ,  the trajectory of the taxi driver is Tℵ =
P/D1, P/D2 ⋅⋅⋅, P/Dk  is the pickup/dropoff spatial-temporal time order sequence 
points, which describes the last pickup/dropoff point P/Dk of a taxi driver ℵ.  In the 
trajectory Tℵ, the P/Dk ∈ Rlat.log belongs to latitude and longitude and k is the length 
of the trajectory.  The trajectory points P/D1 and P/D2 are the movement from one 
point to other points and so on the geographical coordinates k. 
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• Problem Statement: The trajectory of a taxi driver normalized in such a way Tℵ′ =
Rij, where ij is the set of regions ij ∈ [i, 2,⋅⋅⋅, n], Rij ∈ D, Rij is the set of trajectory 
clusters with length n of road T′. The trajectory of a taxi driver Tℵ′ = Pickupk+1, 
where Pickupk+1 is the current pickup point of the taxi driver, the task of this research 
to predict the next actual destination of the ℵ dropoff point Dropoffk+2. 

4. Feature Engineering    
This section discusses the feature engineering of a proposed transformer-based model. 

4.1 Map Decomposition  
In metropolitan areas, it can be found that a sizable portion of data is spatial-temporal in 

nature, such as traffic data, including taxi trajectory data, metro card swiping, bicycle renting 
and returning data, etc. These data are constantly changing and include time and geographic 
locations. To represent and quantify this data at the time and spatial scales. These spatial-
temporal data, in order to process in a better way, city map should decompose first.  The grid-
based decomposition method is used in this work. The grid map is divided into M × N grid 
cells based on longitude and latitude. For example, the region of a grid map is (i, j),  ith is 
represented row, and jth represents the column of the city grid map. 

4.2 Missing Data Cleaning   
Spatial temporal data is often missing owing to sensor failure, other human variables, and 

communication problems. Data analysis subsequently has brought a negative impact due to 
the data missing problem.  At the moment, the primary approach for processing data that is 
missing is to fill in the missing value. Missing data further has two properties, such as 
imbalance data and uncertainty of data. Two primary manifestations of spatial-temporal data 
imbalance are imbalanced data labeling and distribution. With the implementation of machine 
learning algorithms, researchers advocated using uncertainty quantification to ease the issue 
of data insecurity. This work addresses missing data problems with spatial-temporal implicit 
correlation.  The K-mean clustering technique is utilized to identify the solution to data 
imbalances or distribution imbalances and data uncertainty. 

4.3 Trajectory Normalization  
For the sparsity problem to be overcome, a method is put forward for the normalization of 

trajectories.  To mitigate the effect of sample uncertainty, this technique transforms GPS 
geographical coordinates into a road junction sequence, complete with the driver's behavior 
and directions. This procedure has two benefits: first, it maps the trajectory from geographical 
coordinates to road trajectories, and second, it eliminates the uncertainty associated with 
location sampling. Three main steps contain the normalizing process: the first one is data 
cleaning, such as missing data, imbalance, and uncertain data; the second is map 
decomposition and matching, and the third is the extraction of junction sequence. The data 
cleaning process removed the data loss, errors in data, drifting sampling, and some atypical 
sampling. The preprocess data according to driver behavior and driving regulations. The GPS 
parameters by longitude and latitude can be snapped using the map matching technique by 
using the skip-gram model and Haversine distance. To extract data from road intersections in 
order to forecast the driver's next destination-related behavior. 
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4.4 Extraction of Spatial-Temporal Features   
Movement in the ITS is governed by numerous factors, such as the geographical and 

temporal features of visited locations. Every region has distinct activities that give the region's 
location a significant meaning in relation to the action. Therefore, the illustration of a specific 
region is essential for evaluating mobility. This has the advantage of enriching the information 
associated with each location. The proposed model is an embedding module for multiple 
modules. The module combines driver features and spatial-temporal information for feed-
forward neural networks to represent a vector. Some external features are available to improve 
the accuracy of predictions; for instance, meteorological conditions characteristics are merged 
into the weight matrix. 

4.5 Behavioral Features of Taxi Driver    
As the driving features analysis, the taxi process must be taken starting from two stages, 

pickup, and dropoff, and then driving have different characteristics in various stages. To 
encode the behavioural features of a taxi driver, we outline the categorized attributes of the 
driver. The primary consideration is time, where the time of day is represented in hours. For 
example, the range is denoted as ℎ ∈ [1,24] , covering the hours from 1 to 24. Another 
significant aspect is the classification of weekdays, which is represented as weekdays 𝑤𝑤𝑤𝑤𝑤𝑤 =
[1,7], indicating the range from 1 to 7, representing the total number of weekdays. The days 
of the week are broken down into different groups, including days of work, weekends, 
vacations, and pre-holiday. These characteristics are modeled using a one-hot approximation. 
Totally separate spatial and temporal transformers generate the vector's dense encoding with 
the proposed model network's embedding layer. During the training of the proposed method, 
weight values are updated. 

4.6 Semantic Features    
Each cluster in the collection of geographical clusters is endowed with spatial semantic 

properties. Each POI identifies the closest cluster. The features associated with POI are derived 
from the mapped route. The location of the POI is hierarchical structures categorized, for 
example, educational locations and other locations of libraries and institutions. The 
classifications of POI indicate the area's combined depiction. The spatial semantic features are 
embedded in the spatial transformer model during its embedding phase. The semantic 
characteristics are derived from the POI; they are linked with the track and tally of the 
aggregated macro-categories of the POI. The cluster encoding has the ability to measure every 
component within the cluster. The distribution of POI is L number of the Chanel matrix, i.e., 
Poi ∈ RM×N×L, L is the category of POI, while M and N is the width and height of the city 
map. In this work, region Ri,j is the collection of all regional areas, and i and j represent the 
longitude and latitude of trajectory points. The type of POI in a region mathematically can be 
expressed as tensor  Tℵ

R(i,j) = Tℵ
Ri

Σi=1
L Tℵ

Ri
 where represent TℵRi kind of the point of interest ith in 

region R. 

4.7 Geographical Zone Embedding     
In a semantic way, spatial characteristics represent a region's time-independent properties 

without capturing the region's zone-specific dynamics. In this scenario, urban transport 
information is the finest resource for accurately describing human movement in cities. 
Consequently, the urban region has comparable embedding characteristics and produces 
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identical geometric outcomes. From this vantage point, individual mobility is viewed as a 
language pattern. In this manner, the location order is the word series. This demonstrates that 
the stream of text information is represented. Natural language processing is implemented in 
the sequences model.  In this method, the entire sentence is encoded in the hidden context; so 
every word conveyed to the decoder section has its own hidden layer. The hidden states are 
responsible for decoding the results from the encoding device at each phase. In this strategy, 
the transformer is employed to interpret, and a word provided to the contextual embedding is 
acquired from the adjacent frequency window. Similar terms have the same vector 
representation from a semantic perspective. Thus, every location aggregation bears a 
descriptive designation. The word sequences will be used to map the trajectory in this fashion. 
By utilizing the encoder and decoder units, we can better comprehend the zone embedding 
illustrated in Fig. 1. This embedding is based on various zones with unique mobility patterns 
and relationships. 

 

Fig. 1. Operation of the encoder unit as a token for zone embedding 

5. Architecture Overview  
A transformer is a major constituent that transforms one sequence into another. Encoders 

and decoders facilitate the completion of all of these operations. In contrast to pre-existing 
sequence-to-sequence models, the transformer belongs to the non-RNN category and is 
distinct from RNN. The attention processes are the transformer's primary cornerstone, 
allowing the subject to acquire any portion of the patterns despite their distance. As shown in 
Fig. 2, the layout of the transformer consists primarily of encoder and decoder modules. 
Encoder units of the same type are positioned at the base of the layered decoder components. 
The encoder unit comprises a self-attention layer and a position-dependent feed-forward layer, 
whereas the decoder module includes an extra layer, which is the encoder-decoder attention 
layer. An additional layer is introduced between the self-attention and feed-forward layers, 
serving as a connection between the encoder and decoder segments. 

Embedding each driver trajectory sequences to comparable with word/token segments 
during transformation. The transformer model utilizes multi-head attention layers, which 
assign varying levels of importance to different words or tokens in a sequence based on 
different facets or heads. This information is then concatenated and subjected to a linear 
transformation before being assigned to separate output heads. Both the encoder-decoder 
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attention layers and the self-attention layers employ identical attention mechanisms. For 
instance, self-attention can serve as a demonstration of this mechanism.  Self-attention 
operates on token sequences, such as trajectories, denoted as T = (P1, P2, … , Pn); each token 
in the sequence is represented by a vector, which undergoes linear transformation and is 
refreshed through a weighted sum of the other words. The weights are established based on 
their similarity, referred to as the attention index. Take the update of  𝑇𝑇𝑖𝑖as an example in this 
context: 

                                                           𝑦𝑦𝑖𝑖 = Σ𝑗𝑗=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑖𝑖�𝑊𝑊𝑉𝑉𝑇𝑇𝑗𝑗�                                                      (1) 
In the expression above, 𝑦𝑦𝑖𝑖 represents the updated value of Ti and aij represents the attention 
score. To determine the degree of similarity among both Ti and 𝑇𝑇𝑗𝑗 by: 

                                                          𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝐶𝐶𝑖𝑖𝑖𝑖�
Σ𝐾𝐾=1
𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒(𝐶𝐶𝑖𝑖𝑖𝑖)                                                          (2)  

where congruence Cij between two linearly transformed 𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑗𝑗  is measured. To determine 
the scaled dot product by: 

                                                        (𝐶𝐶)𝑖𝑖𝑖𝑖 =
�𝑇𝑇𝑖𝑖𝑊𝑊𝑄𝑄

��𝑇𝑇𝑗𝑗𝑊𝑊𝐾𝐾
�
𝑇𝑇

√ℎ
                                                     (3) 

To enhance the adaptability of the transformer, three linear transformation matrices are 
represented as WV, 𝑊𝑊𝐾𝐾, and 𝑊𝑊𝑄𝑄 are introduced, where the final dimensionality is represented 
by h. These three matrices perform the same linear transformation as W. Five components 
make up the proposed deep-wide model STTFFNs, with each element operating as described 
below. 

• The map matching technique is used to divide the whole city into Local areas and 
global areas, embedding the taxi trajectories in the first step.  To compress the 
trajectory sequences based on their spatial similarity relationship.  To use the feed-
forward neural network, which helps the learning of the global dependencies.    The 
city-wide average error calculated distance score for local and global regions using 
Haversine distance.   

• In the proposed method for designing novel spatial-temporal transformers, 
transformers are founded on a component for multi-modal integrating spatial 
characteristics. The encoder component of the transformer model converts the input 
tokens into dimensional vectors through the spatial and temporal transformer 
embedding layers. The input elements are then passed through the positional encoding 
layer to maintain the sequence order. Mathematically, positional encoding can be 
defined as follows, with the aim of preserving the sequential ordering of the sequence: 

                                             𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑔𝑔(2𝑖𝑖)𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑝𝑝𝑝𝑝𝑝𝑝

10,000
2𝑖𝑖
ℎ
�                                            (4) 

                                     𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑔𝑔(2𝑖𝑖+1)𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑝𝑝𝑝𝑝𝑝𝑝

10,000
2𝑖𝑖
ℎ
�                                        (5) 

In the provided equation, the variable "i" signifies the dimension of the positional 
embedding, while "h" represents the size of the hidden layers. 
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Fig. 2. Mainframe work architecture  

 
                                                    𝑊𝑊⨀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑅𝑅ℎ                                                             (6) 
In which W is the concatenation operator and the three linear transformation matrices. 

• To cope with GPS data, leverage unique information sources to include spatial and 
temporal aspects. The new sources of data utilized are location-based social networks 
and mobile phones. These sources can be utilized to gather data on human mobility 
patterns and to improve the efficiency of municipal traffic made use through Four-
Square. This LBSN identifies the quantity and sorts of events happening in the future 
location, as well as the number of users who can obtain service in that region. All of 
the information received may subsequently be utilized to deduce the taxi's location. 

• The attention mechanism was used in the process of obtaining sequential data from 
GPS traces and spatial-temporal input characteristics. The transformer network is 
capable of learning both spatial and temporal features. The learning process of the 
suggested network entails embedding spatial-temporal features derived from taxi 
driver behavior alongside semantic features, emphasizing trajectory planning. 
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• The last component of the proposed network design is prediction. The encoder and 
decoder stack merge the output of previous units to complete the forecasting 
operation.The forecasted part is made up of two layers:  a linear layer and a Softmax 
layer. In contrast, the SoftMax layer consists of multiple neurons, where the number 
of neurons is denoted as m = |C|. With the help of a clustering algorithm, construct a 
collection of geographic clusters C. The K-means clustering algorithm is utilized to 
train all trajectories towards their final destinations. Leveraging latitude and longitude 
information, each point along the route is allocated to the closest centroid 𝐶𝐶𝑖𝑖 . 
Incorporating two additional neurons into the output layer enables the representation 
of cluster center coordinates for longitude and latitude. Notably, the initialization 
weights of the matrix can be adjusted using the cluster centers operation, akin to the 
linear output layer. 

5.1 Local Trajectory Planning      
The local or neighbourhood surrounding locations R(i,j) at each time interval t,  treated as 

M × N image having one channel of the values of local trajectories with R being the image 
center where spatial granularity controls by the size geographical coordinates k.  From a local 
point of view, used zero padding for the locations R(I,j) at the boundaries of city-wide area.  
The image of a tensor as a result of Tℵ,t

R(i,j) ∈ ℝM×N×C in time interval t for each location i, j. 
To encode the spatial correlation in the layers transformer model Tℵ,t

R(i,j) as input to feed with 
Tℵ,t
R(i,j),0  with W adjustable weights. For example, the taxi driver pickup and dropoff the 

passengers in Region R(i,j) during the day DR(i,j) = {1,2,3,⋅⋅⋅, n} with n demand. As denoted   
Tℵ.Dt
Pick.R(i,j) and Tℵ.Dt

Drop.R(i,j), mathematically illustrated as: 

                                                𝑇𝑇ℵ.𝐷𝐷𝐷𝐷
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.𝑅𝑅(𝑖𝑖,𝑗𝑗) = �𝑇𝑇𝑡𝑡0

𝑖𝑖,𝑗𝑗,𝑇𝑇𝑡𝑡1
𝑖𝑖,𝑗𝑗,⋅⋅⋅,𝑇𝑇𝑡𝑡𝑡𝑡

𝑖𝑖,𝑗𝑗�
𝑇𝑇

                                             (7) 

                                                𝑇𝑇ℵ.𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷.𝑅𝑅(𝑖𝑖,𝑗𝑗) = �𝑇𝑇𝑡𝑡0

𝑖𝑖,𝑗𝑗,𝑇𝑇𝑡𝑡1
𝑖𝑖,𝑗𝑗,⋅⋅⋅,𝑇𝑇𝑡𝑡𝑡𝑡

𝑖𝑖,𝑗𝑗�
𝑇𝑇

                                            (8) 
Where Tℵ.Dt

Pick.R(i,j)  is the pickup distribution places in region i, j, and Tℵ.Dt
Drop.R(i,j)  dropoff 

distribution places in region i, j from the time interval t of Dt. 
As mentioned above about W adjustable weights, in this work employed the skip-gram 

model, which automatically learns the spatial correlations of local areas from the historical 
trajectories. Bag of words (CBOW) and Skip-gram model is two variants of Word2vec model, 
which utilizes raw texts to train the word vectors. Both variants are algorithmically identical; 
the difference is that skip-gram forecasts the middle future location, whereas skip-gram does 
the opposite and focuses on the surroundings of the middle future location. In the previous 
research, the author utilized the CBOW version to forecast the future destination; however, 
the CBOW variant has the restriction of providing efficient performance with limited data; 
nevertheless, if the data set is large may obtain reliable prediction using the skip-gram model. 
As definition 2, The sequences of the taxi driver trajectory Tℵ employed as training, the skip-
gram model has the objective to set maximized average log probability can be defined as: 
                                               1

𝑇𝑇
Σℵ=1{𝑇𝑇Σδ=−χ

χ 𝑙𝑙𝑙𝑙 𝑔𝑔 𝑝𝑝 (𝑇𝑇ℵ{′} + δ|𝑇𝑇ℵ)                                        (9) 
Where training window size is χ,   when computing log probability, the inner summation goes 
from −𝜒𝜒 to 𝜒𝜒 and absolutely predicts the trajectory Tℵ′ given the middle of trajectory Tℵ. The 
outer summation is traversed by all the trajectories in the training corpus, which come from 
the skip-gram hidden layers. 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1737 

In the skip-gram model, every trajectory cluster Tℵ with two learnable parameter vectors 
associated with longitude and latitude point of view, respectively.  The set of parameters is 
ATℵ  and BTℵ′ , and they represent the pickup and dropoff trajectory of taxi as a vector Tℵ 
respectively. To apply the softmax function to correctly calculate the probability of the 
prediction trajectory Tℵ′,i and Tℵ′,j with longitude i and latitude j coordinates C is the set of 
clusters in the trajectories, mathematically as follows:   

                                                𝑃𝑃�𝑇𝑇ℵ′.𝑖𝑖�𝑇𝑇ℵ′,𝑗𝑗� =
𝑒𝑒𝑒𝑒 𝑝𝑝�𝐴𝐴𝑇𝑇ℵ′.𝑖𝑖𝐵𝐵𝑇𝑇ℵ′.𝑗𝑗�

Σ𝑙𝑙=1
𝐶𝐶 𝑒𝑒𝑒𝑒 𝑝𝑝�𝐶𝐶𝑙𝑙𝐵𝐵𝑇𝑇ℵ′.𝑗𝑗�

                                           (10) 

The above equation encoded into a tensor as P�Tℵ′,i�Tℵ′,j� ∈ R. 

5.2 Global Trajectory Planning      
The areas are typically shown spatial co-occurrences among highways, in historical 

trajectories are comparatively distant from one other, so the trajectories term them remote 
dependencies. The proposed work is to learn remote dependencies employ feed-forward neural 
network (FFN); the distant trajectories of the taxi encoded to learn the remote correlation into 
vector-based illustrations. The basic structure of FFN comprises an input layer, a hidden layer, 
and an output layer. Neurons comprise the input layer; its role is to accept neurons as input 
and pass them on to the subsequent layers. The input layer's number of neurons should be 
sufficient be equal to dataset's total number of attributes. The next layer is discussed as hidden 
layer, which is sandwiched in both layers of input and output. The function of the hidden layer 
is to contain a large number of neurons that undergo transformations prior to receiving input. 
This layer updates and trains the network's weights to make it more predictive. The last layer 
is the output layer; its primary purpose is to forecast the characteristics of the model that can 
be created. The operation of FFD is depicted in Fig. 3. As stated, before about neuron weights, 
the main objective is to apply intensity or amplitude between the correlations of two neurons. 
The weight is distributed randomly, often between 0 and 1. However, neural networks are 
algorithmically computed data in three simple stages, i.e., the first step is to multiply the inputs 
and weights, the second step is to add the biases, and the third step is to use the activation 
function. Finally, the output signal is transformed into a weighted sum using the activation 
function, which is also known as the transfer function. The operations of FFN mathematically 
can be expressed as follows: 
                                                       𝐼𝐼𝑛𝑛𝑡𝑡 = σ�𝑊𝑊𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡μ𝑡𝑡 + 𝑏𝑏𝐼𝐼𝑛𝑛𝑡𝑡�                                              (11) 
                                                        𝐻𝐻𝑡𝑡 = σ�𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡𝑥𝑥𝑡𝑡μ𝑡𝑡 + 𝑏𝑏𝐻𝐻𝑡𝑡�                                                 (12) 
                                                        𝑂𝑂𝑡𝑡 = σ�𝑊𝑊𝐻𝐻𝑡𝑡𝑥𝑥𝑡𝑡μ𝑡𝑡 + 𝑏𝑏𝑂𝑂𝑡𝑡�                                                   (13) 
Where σ is used as an activation function, WInt , WHt, and WOt is related input, hidden layer, 
and output weight matrices,  xt , and μt  input and output variables, bInt , bHt ,  and bOt  are 
expressed as biases.  The finite training set as given (xi,μi) ∈ ℝM×N, the input and output 
variables with η number of neurons is written as general form: 
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Fig. 3. Working of Feed-forward network 

 
                                                   Σ𝑗𝑗=1

η γ𝑗𝑗σ𝑗𝑗(𝑥𝑥𝑖𝑖) = Σ𝑗𝑗=1
η γ𝑗𝑗σ�𝑊𝑊𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗� = 𝑍𝑍𝑖𝑖                       (14) 

Where jth hidden layer of neuron has input weight is Wj, and output weight is γj. σ is the 
activation function and bj is threshold for jth hidden layer of neuron. The training error can be 
minimized as 
                                                       Σ𝑖𝑖=1�|𝑍𝑍𝑖𝑖 − μ𝑖𝑖|� = 0                                                       (15) 
Which is equal to the output matrix and can be expressed as: 
                                                      Σ𝑗𝑗=1

η γ𝑗𝑗σ�𝑊𝑊𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗� = μ𝑖𝑖                                              (16) 

5.3 Transformer Networks Learning and Prediction       
The GPS location data's temporal order is determined by tracking movement. Similar to 

previous research, RNN outperforms alternative architectures like MLPs in tracing the 
mobility of sequential data. These networks are not intended to operate in tandem with spatial-
temporal data. Nevertheless, the inability to parallelize training data is a limitation of RNN. 
Parallelization is utilized by the transformer network to organize sequential and temporal data. 
In addition, prior studies concentrate primarily on singular, fine-grained trajectories to predict 
the next vehicle location. In other terms, these approaches are founded on each ride's GPS 
coordinates. The earlier research has significant drawbacks, such as the need to retain a 
massive amount of GPS data and almost all trajectory points in order to predict the trip's 
conclusion. To circumvent the aforementioned issue, the conceptual model trajectory 
conforms to the definitions provided in the "Preliminaries" section. The sequences of GPS 
points for both pick-up and drop-off are comprised of pairs from multiple transportation 
vehicles. This is the most effective method to avoid maintaining pick-up and drop-off locations 
along the full journey. In this manner, the forecast is instantaneous; only the beginning and 
conclusion points of the voyage can be determined. Consequently, a large number of 
transportation strategies are formulated as classification problems to determine the next 
location — the objective of the mobility model is to classify the predicted location. The 
primary disadvantage of this strategy is that the majority of locations are unknown during 
model training. The model never generates multiple locations. To surmount this drawback, the 
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proposed method forecasts the ultimate location using two distinct coordinate functions, 
longitude and latitude. 

The task related to predicting the destination is tricky; in order to decrease the difficulty, 
use the k-mean clustering technique to create midpoint clusters for sample data and clustered 
centroid points for the prediction point of view of the next destinations. The main objective of 
the centroid is to estimate their probabilities with the help of destination prediction.  In this 
work used local and global trajectory optimization to predict the future location geographical 
coordinates in terms of longitude and latitude, respectively. In the main framework 
architecture, Figure employed a fully connected layer to map local and remote trajectories with 
operational points. The probabilities of each operational point can estimate through softmax 
function. After the training and testing process of this model, the degree of spatial interaction 
between the roads examined that the value of higher similarity has stronger traffic correlations. 
The Haversine distance is used as a loss function, and finally, get estimated longitude and 
latitude coordinates of the nest destination. The two vectors x,  𝜇𝜇, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are expressed as 
dot product and magnitude in cosine similarity formula which is mathematically illustrated as: 

                                              𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃) = 𝑥𝑥.𝜇𝜇
�|𝑥𝑥|�𝜇𝜇|‖

= Σ𝑖𝑖=1
𝑡𝑡 𝑥𝑥𝑖𝑖𝜇𝜇𝑖𝑖

�Σ𝑖𝑖=1
𝑡𝑡 𝑥𝑥𝑖𝑖

2�Σ𝑖𝑖=1
𝑡𝑡 𝜇𝜇𝑖𝑖

2
                                         (17) 

In above equation, xi  and μi is the component of vectors x and μ. According to the definition, 
as defined in the problem formulation section, the Haversine distance can be defined on the 
basis of two points’ longitude and latitude, respectively.  The trajectory of taxi TℵR(i, j) have 
pickup and dropoff  R(i, j) longitude and latitude, mathematically can defined as: 
                                              𝑇𝑇ℵ

𝑅𝑅(𝑖𝑖,𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = Σ𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒(τ𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑖𝑖

Σ𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒�τ𝑗𝑗�
                                   (18) 

                                              𝑇𝑇ℵ
𝑅𝑅(𝑖𝑖,𝑗𝑗)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = Σ𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒(τ𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑖𝑖
Σ𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒�τ𝑗𝑗�

                                         (19) 

The above equation represents the predicted longitude and latitude, and τi is the previous layer 
activation in learning the model.  These longitudes and latitudes used two points as pickup and 
dropoff, employed of loss function as: 

                                              𝑅𝑅(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡2) = 2. 𝑟𝑟. τ𝑡𝑡𝑡𝑡𝑡𝑡 �� τ
1−τ

�                                  (20) 

                                                   τ = 𝑠𝑠𝑠𝑠𝑛𝑛2 �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒2−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒1
2

� +

                                        𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒2) 𝑠𝑠𝑠𝑠𝑛𝑛2 �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒2−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒1
2

�            (21) 
 
Where point1 is the forecasting, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡2is the actual location, latitude1, and  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒2,  is 
the geographical coordinates of forecasting 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡1. 

6. Experimental Study  
The use of taxi trajectory data is essential in developing better transportation infrastructures 

and policies by observing, evaluating, and optimizing traffic flow. Urban areas face a common 
issue of traffic congestion, often caused by poor road planning, lack of control, and insufficient 
maintenance. To evaluate the proposed model, two real-world datasets from Manhattan, New 
York, and Porto were used. 
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6.1 Datasets        
The Porto dataset comprises 1.7 million cab route information collected from 442 taxis. To 

obtain 200,000 taxi trajectory trips, 600 drivers were selected from the initial 5,000. The 
dataset period ranges from 2013-07-01, to 2014-06-30. The GPS points from each ride dictate 
the pick-up and drop-off locations, with spatial-temporal features sampled every 15 seconds. 
Conversely, the Manhattan dataset was obtained from 13,426 taxis operated by 35,000 unique 
drivers, spanning from January 3, 2013, to January 3, 2014. The dataset encompasses 
9,100,000 taxi trips' trajectories and records spatial-temporal characteristics every 10 seconds 
during pick-up and drop-off. The datasets comprising taxi trips include metadata that provides 
information on the taxi's identification number, the type of origin, the day type, and the starting 
timestamp. This information was used to gather useful insights into people's mobility patterns, 
such as their trips to the office or returning home. In this study, the Porto dataset was used, 
and the cab driver traces were utilized as a series of inputs for the pickup/drop-off destinations. 
The taxi drivers were grouped by their ID and sorted in ascending order based on different 
timestamps. The taxi pickup/dropoff points were used to construct a taxi trajectory by 
considering four past trips and imposing a Tβ = 8 .This approach strikes a good balance 
between maintaining the relevant history and learning the driver behavior model. The 
development of the model involved the selection of a driver in relation to another driver with 
the same time-shift and the utilization of trip sequences that have a maximum time gap of three 
hours between them. 

6.2 POI Extraction with Taxi Trajectory        
The points of interest (POI) typically include geographical coordinates, such as longitude 

and latitude, as well as textual information about the activity occurring at that location. POIs 
can provide various levels of detail for characterizing activities based on hierarchical 
categorization. Instances of hierarchical classification include categories Examples include 
medical facilities, food establishments, Chinese restaurants, and Western restaurants. In this 
work, FourSquare was utilized as an online resource to extract POI points. FourSquare is an 
online geographical social network platform that offers recommendations for places, along 
with information on activities. The FourSquare API allows for up to 100,000 requests per day 
at no cost. Each location-based social network (LBSN) structures its location categories based 
on the activities taking place at each location, such as shops or restaurants. LBSNs recommend 
locations and activities semantically based on their semantic characteristics and associated 
historical paths with POI. For example, to establish the path for activities at Liberty Hospital 
belonging to the Medical category, it would be structured as Medical---Kingadward Hospital-
--Youhana Hospital. This type of structure is more informative when future locations are POI 
names. The structure that has been established is composed of various characteristics, and each 
node includes augmented proximity data. LBSNs, including FourSquare, categorize POIs into 
macro-categories such as Proficient and Other Places, Residential areas, colleges and 
universities, shops, food establishments, services, art and entertainment venues, and travel and 
transport facilities are included. The dataset extracted from FourSquare yielded 8,500 POIs 
for Porto and 65,300 POIs for Manhattan. While census data and land usage are interesting 
factors, the proposed model only considers POI. Although there is potentially more intriguing 
information about spatial data available, it is not consistently accessible. Additionally, the 
availability of datasets for other cities may not be uniform in terms of their definition 
convergence. 
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6.3 Tools and Technology          
Tools and technologies for deep learning experiments include a wide range of software and 

hardware resources. Popular deep learning frameworks such as TensorFlow, PyTorch, and 
Keras provide a user-friendly interface to design, train and evaluate neural networks. These 
frameworks can be run on powerful graphics processing units (GPUs) or tensor processing 
units (TPUs) to accelerate the training process. Additionally, cloud-based services such as 
Amazon Web Services (AWS) and Google Cloud Platform (GCP) offer pre-configured deep 
learning environments, GPU/TPU resources, and storage solutions. Data processing and 
visualization libraries such as NumPy, Pandas, and Matplotlib are also widely used in deep 
learning experiments. Furthermore, tools like Docker, Kubernetes, and Jupyter Notebooks 
enable reproducible experiments and facilitate collaboration among researchers. During the 
experimentation phase, we utilized both Google Cloud and an NVIDIA 2060 RTX GPU. The 
model was trained using Adam as the optimizer and Mean Squared Error (MSE) as the loss 
function. The model was trained using a batch size of 16 and a learning rate of 10−3, with 100 
to 300 epochs. To maintain consistency, we conducted 6-7 separate experiments on every 
dataset. 

6.4 Parameter tuning and time Complexity           
In the experiments were conducted on two datasets, Porto and Manhattan, which comprised 

200,000 and 350,000 taxi rides, respectively. Random partitioning was used to divide the 
datasets into three sets: training, testing, and validation, with a ratio of 70%, 15%, and 20%, 
respectively. The datasets consist of full trajectories with pick-up and drop-off points, 
following trajectory Definitions 1 and 2. The problem's spatial nature for stand classification 
suggested that the reliability and F1-score were insufficient to quantify the error accurately 
due to the unbalanced nature of the datasets. Therefore, the Error Distance Score (EDS)" was 
estimated using the Haversine distance" method, the function estimates the gap between the 
present and intended endpoints of a taxi journey. 
                                                    𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝑘𝑘𝑘𝑘𝑘𝑘 = �𝐻𝐻𝐻𝐻𝑣𝑣𝐷𝐷𝐷𝐷𝐷𝐷(𝑦𝑦�,𝑦𝑦)�                                (22) 
The given equation represents the relationship between the forecasted location, denoted by y�, 
and the current origin or destination, denoted by y. As an evaluation matrice, RMSE (Root 
Mean Squared Error) is a measure of the difference between the predicted values and the actual 
values of a dataset. It is calculated as the square root of the mean of the squared differences 
between the predicted and actual values. The formula for RMSE is: 

                                                  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �Σ𝑛𝑛𝑖𝑖=1(𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2

𝑛𝑛
                                                       (23) 

where n is the number of observations in the datasets, 𝑦𝑦𝑖𝑖  is the actual value of the ith 
observation yı�  is the predicted value of the ith observation. 

The proposed model was tuned and evaluated on two real-world datasets, with 
hyperparameters settings and training/testing time summarized in Table 1. Throughout the 
parameter tuning stage, a grid search technique was employed to seek out the best number of 
neurons, layer depth, and learning rate. The model's performance was evaluated using the 
validation set, and parameter values were selected accordingly Table 1. To ensure fair 
comparisons with previous studies, the K-means algorithm was employed to train the model 
with K parameters, with the Porto dataset set at 3392 parameters and the Manhattan dataset 
set at 2000 parameters. It's worth noting that the model remains unbiased in determining the 
number of clusters, opting for a minimum threshold based on the proximity of clusters to the 
centroid. Consequently, the model might yield a greater number of clusters compared to the 
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distance ratio between clusters and centroid. 
 

Table 1. Summary of Hyperparameter Configuration and Model Training 
Datasets Learning 

Rate 
Activation 
Function 

Neurons  Optimizer  Training 
Time (M) 

Testing 
Time (S) 

Porto 10−3 SoftMax 256 Adam 74 0.23 
Manhattan 10−3 SoftMax 256 Adam 69 0.17 

 
After a certain point during training, the number of clusters ceased to improve. The feature 

layer size was designated as 10, and the embedding layer size was set to 20. Furthermore, the 
transformer encoder and decoder have set the size of FourSquare macro-categories to 10. As 
per prior research representation, the vector size obtained after concatenating with embedding 
layers and feed-forward neural networks determined the input dimension of the linear layer 
and the scaled dot product. Training the model involved using the Adam optimizer with 
distinct values assigned to longitude and latitude. The model integrated various shared 
structures, including spatial and temporal transformers, a linear layer, a scaled dot product, 
weighted sum layers, a prediction layer, a dropout layer, and a feed-forward layer. These 
settings were carefully selected and tuned for a fair comparison, as outlined in previous 
research. The MSE was used as the loss function for both training and testing the model. Early 
stopping was employed as a checkpoint and optimization strategy to ensure that the model 
converged efficiently. This technique allowed the model training to stop when the MSE score 
on the validation set did not improve beyond a specified limit of epochs, usually 10 or 20. The 
MSE score was computed at each epoch during the training phase, and the network 
hyperparameters were stored if a good MSE future location was achieved on the validation set. 
During the testing phase, the proposed architecture employed the hyperparameters that 
produced the most optimal validation MSE score. To prevent overfitting, a dropout rate of 0.5 
was implemented, and a window size of 5 was adopted for the model. The word embedding 
for textual labels was achieved using the encoder and decoder phases with a dimensionality of 
20, and Jupiter was utilized as a lab experiment. 
 

6.5 Comparison with Previous Baseline Methods              
To demonstrate the performance and effectiveness of our proposed model, we conducted 

comparisons with seven baseline methods, adjusting parameters accordingly. We 
benchmarked our proposed model against the following state-of-the-art baselines, as detailed 
in Table 2. 
 

Table 2. Comparison of baseline methodologies 
Model Citation  Description 
Autoregressive 
Integrated Moving 
Average (ARIMA) 

 
[17] 

Highly effective for time series forecasting, predicts 
future values based on historical data using parameters 
such as autoregression, differencing, and moving 
average. 

Nearest Neighbors 
(NN) 

 
[18] 

Takes taxi pick-up location as input, the neural network 
processing outputs the longitude and latitude of the 
nearest cluster centroid. 

Multi-Layer 
Perception (MLP)            

 
 

Extracts input features representing taxi trajectory from 
initial and last five GPS data points combined with 
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[19] metadata. Utilizes MLP with standard hidden layers and 
ReLu activation functions. Outputs destination cluster's 
weighted average centroid using SoftMax layer. Trained 
using Stochastic Gradient Descent with cross-entropy 
loss function. 

Multi-layer 
Perception 
(MMLP-SEQ) 

 
[19] 

Similar to MLP, this model excludes the initial and last 
five GPS points from the input. 

Fully Connected 
(FC-LSTM)  

 
 

[20] 

Utilizes LSTM with driver and time expressions as 
input. Connects longitude and latitude coordinates 
entirely and feeds them into the embedding layer as 
location. Weights are randomly adjusted and updated 
during training. 

Long-Short-Term 
Memory 
(BOC+W2V)   

 
 

[20] 

Combines Bag of Concept (BOC) and Word2Vec 
(W2V) with LSTM. W2V provides representation for 
the RNN, integrated with both BOC and W2V features. 
Embeds zone coordinates using W2V instead of BOC. 

Spatio-Temporal 
Graph 
Convolutional 
Networks (ST-
GCN) 

 
 

[21] 

This model solely relies on spatial and temporal 
components, leveraging graph weights and embedding 
spatial-temporal features through a transformer 
architecture. Transportation transformer captures 
geographical interdependence of time series data to 
maintain continuity and consistency. 

 

6.6 Performance Evaluation               
     Table 2 compares the performance results of the proposed model with the previous baseline 
models on both the Porto and Manhattan datasets. The proposed model demonstrates a 
significant performance advantage over the state-of-the-art model’s LSTM(BOC+W2V) and 
ST-GCN by a considerable margin. The anticipated model steadily outperforms the prior 
models by modeling dynamic spatial and temporal dependencies. The proposed model 
demonstrates efficient performance and is able to effectively capture long-range temporal 
dependencies and hidden spatial dependencies. Additionally, it was pragmatic that the 
presented model outperforms NN and simple MMLP in terms of performance. Table 2 shows 
that NN and MMLP perform poorly in manipulative the error distance score in kilometers. On 
the Porto dataset, the proposed model outperforms NN and MMLP by 46-48% and 
demonstrates comparable performance to the enhanced variant of MMLP-SEQ. On the 
Manhattan dataset, the proposed model outperforms NN and MMLP by 35-40% and is on par 
with MMLP-SEQ. The proposed approach incorporates input features comprising driver and 
time information, while the spatial zone embedding involves feeding the coordinates of each 
zone cluster into the embedding layer. Among all the baseline models, the ARIMA model 
exhibits the poorest performance. 

 After analyzing the Porto and Manhattan datasets in Tables 3 and 4, we observed that 
ARIMA A had an RMSE of 5.10 and NN had an RMSE of 5.05 on the Porto dataset. Although 
ARIMA A had a lower RMSE, the difference was slight, so we need to consider other metrics 
before concluding which model has better performance. On the Manhattan dataset, ARIMA A 
had an RMSE of 4.65, which was lower than the RMSE of NN, which was 4.69. Similarly, 
MMLP had an RMSE of 4.47 and MMLP-SEQ had an RMSE of 4.29 on the Manhattan dataset. 
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When comparing the RMSE values of FC-LSTM and LSTM with BOC+W2V on the Porto 
dataset, FC-LSTM had an RMSE of 4.06, while LSTM had an RMSE of 3.41, indicating better 
performance by LSTM. On the Manhattan dataset, the RMSE values were 4.21 for both models. 

Finally, when comparing the RMSE of ST-GCN with our proposed method, the RMSE on 
the Porto dataset was 3.71, and on the Manhattan dataset, it was 3.74. These results suggest 
that our proposed method performs similarly to ST-GCN in predicting the citywide trajectories. 
However, we need to consider other factors such as computational complexity, model 
interpretability, and generalization ability before making any final conclusions. 

The FC-LSTM and its enhanced variant incorporating BOC and W2V demonstrate strong 
performance when integrated with LSTM, particularly LSTM(BOC+W2V), with the 
improved version exhibiting a lower error rate. In LSTM(BOC+W2V), BOC and W2V are 
employed to represent the features of the recurrent neural network. ST-GCN is surpassed by 
LSTM(BOC+W2V), resulting in a further reduction in error rate compared to previous models. 
The transformer approach, relatively novel, was initially introduced in 2017 for NLP 
translation. In the Porto dataset, the performance of the proposed approach is contrasted with 
LSTM(BOC+W2V) and ST-GCN, showcasing a 30-35% improvement over both 
aforementioned approaches. The results obtained on the Manhattan dataset are 25-32% better 
than the previous models. Fig. 4(a) shows the error distance score and RMSE on both the 
Manhattan and Porto datasets. In Fig. 4(b) and (c), Pickup/Dropoff RMSE Statistics on Porto 
and Manhattan datasets for the STTFFNs are compared, respectively. To train the 
classification models, two neurons were removed from the output, and categorical cross-
entropy was used as the loss function. This way, the locations' positions were limited to the 
list of centroids for clusters. In Tables 3 and 4, we observed that ARIMA had the worst results 
on both the Porto and Manhattan datasets, while LSTM and ST-GCN showed good forecasting 
results compared to our proposed model.  

Fig. 4(d) and (e) represent the training and testing validation with training Epochs on both 
Porto and Manhattan datasets. The geo-coordinates were prejudiced by each cluster centroid 
through the associated probability of the SoftMax layer. This allowed for regression on the 
longitude and latitude variables to determine the precise position. Empirical findings showed 
a decrease in the EDS rate on the Manhattan dataset, indicating that the proposed method is 
capable of performing well in cities with uneven longitudinal and latitudinal stretches. 
 

Table 3. Statistics of Porto and Manhattan datasets 
Models Porto (KM) Manhattan (KM) Porto (RMSE) Manhattan 

(RMSE) 
ARIMA 6.220 5.380 5.10 4.65 
NN 3.215 2.375 5.05 4.69 
MNLP 3.211 2.543 3.99 4.47 
MMLP-SEQ 3.003 2.554 3.91 4.29 
FC-LSTM 2.923 2.111 4.06 4.21 
LSTM(BOC+W2V) 2.88 2.088 3.41 3.43 
ST-GCN 2.67 2.00 3.71 3.74 
STFFNs (Ours) 1.90 1.30 3.58 3.63 
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Table 4. Statistics of Porto 
Models Pickup 

(RMSE) 
Dropoff 
(RMSE) 

Pickup (RMSE 
POI) 

Dropoff (RMSE 
POI) 

ARIMA 4.80 5.50 4.95 5.61 
NN 4.10 4.90 4.21 4.98 
MNLP 3.65 4.05 3.66 4.11 
MMLP-SEQ 3.51 4.02 3.63 4.11 
FC-LSTM 3.70 4.10 3.81 4.16 
LSTM(BOC+W2V) 3.46 3.98 3.53 4.06 
ST-GCN 3.40 3.86 3.51 3.93 
STFFNs (Ours) 3.12 3.61 3.26 3.81 

 
Table 5. Statistics of Manhattan 

Models Pickup 
(RMSE) 

Dropoff 
(RMSE) 

Pickup (RMSE 
POI) 

Dropoff (RMSE 
POI) 

ARIMA 4.11 4.80 4.21 4.92 
NN 4.05 4.76 4.13 4.83 
MNLP 3.91 4.51 4.01 4.62 
MMLP-SEQ 3.76 4.31 3.84 4.41 
FC-LSTM 3.51 4.27 3.60 4.36 
LSTM(BOC+W2V) 3.47 3.99 3.56 4.05 
ST-GCN 3.20 3.79 3.29 3.87 
STFFNs (Ours) 2.99 3.61 3.09 3.72 

7. Conclusion 
In conclusion, our research introduces a pioneering deep learning model, the Spatial-temporal 
transformer-based feedforward neural network (STTFFN), tailored to capture intricate spatial 
and temporal dependencies. Leveraging encoder and decoder units within the transformer 
architecture, our model excels in predicting taxi drop-off locations by harnessing the historical 
trajectory of drivers. We effectively encode spatial information by integrating location-based 
social network (LBSN) APIs and FourSquare data, enhancing prediction accuracy. Our 
framework seamlessly integrates spatial-temporal transformers to concurrently capture local 
and distant dependencies for trajectory planning and future location forecasting. We adeptly 
discern similarities between local areas by employing a transformer-based skip-gram model, 
while feedforward networks encode GPS trajectories, enabling precise distant trajectory 
predictions. Rigorous testing on Manhattan and Porto datasets showcases the superiority of 
our model over existing approaches, affirming its robustness and applicability in real-world 
scenarios. Looking ahead, our focus will shift towards integrating diverse data sources, 
including buses, subways, and other modes of transportation. Moreover, we aim to investigate 
the impact of COVID-19 on the transportation system, endeavouring to aggregate datasets 
from various regions to analyze human mobility patterns comprehensively. Additionally, we 
plan to expand our analysis by incorporating additional points of interest (POI) from platforms 
like FourSquare or external sources. Furthermore, we intend to explore using POI graphs 
instead of individual points to enhance the visualization of human mobility and improve the 
accuracy of predicting future destinations. This study identifies limitations requiring further 
investigation in future research. We aim to expand evaluation metrics and integrate destination 
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prediction with travel time estimation, taxi dynamics, and MOD systems. Our primary goal is 
to improve destination prediction accuracy by integrating geographical information, reducing 
customer and driver waiting times, optimizing taxi services, and aiding urban transport 
planning. Despite our method's accuracy, challenges like road congestion and air pollution 
persist. We propose leveraging AI and deep learning to address these issues. 
 

 
Fig. 4. a,b and c dataset statistics analysis, d and e training and testing analysis. 

Acknowledgement 
The Jiangsu Provincial Government Excellent Program of China (2023ZB893) partly 
supported the work. Any opinions, findings, and conclusions expressed here are those of the 
authors and do not necessarily reflect the funding agencies' views. 

References 
 

[1] M. Perić, “Estimating the Perceived Socio-Economic Impacts of Hosting Large-Scale Sport 
Tourism Events,” Social Sciences, vol.7, no.10, 2018. Article(CrossRefLink) 

[2] M. Geng, Y. Chen, Y. Xia, X. (Michael) Chen, “Dynamic-learning spatial-temporal Transformer 
network for vehicular trajectory prediction at urban intersections,” Transportation Research Part 
C: Emerging Technologies, vol.156, 2023. Article(CrossRefLink) 

 
 

https://doi.org/10.3390/socsci7100176
https://doi.org/10.1016/j.trc.2023.104330


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1747 

[3] Y. Wei et al., “A review of data-driven approaches for prediction and classification of building 
energy consumption,” Renewable and Sustainable Energy Reviews, vol.82, pp.1027-1047, 2018. 
Article(CrossRefLink)  

[4] Y. Yang, X. Xiong, Y. Yan, “UAV Formation Trajectory Planning Algorithms: A Review,” 
Drones, vol.7, no.1, 2023. Article(CrossRefLink) 

[5] J. Liu, K. Han, X. (Michael) Chen, G. P. Ong, “Spatial-temporal inference of urban traffic 
emissions based on taxi trajectories and multi-source urban data,” Transportation Research Part 
C: Emerging Technologies, vol.106, pp.145-165, 2019. Article(CrossRefLink) 

[6] D. Feng, F. Zhou, Q. Wang, Q. Wu, and B. Li, “Efficient Aggregate Queries on Location Data 
with Confidentiality,” Sensors, vol.22, no.13, 2022. Article(CrossRefLink) 

[7] X. Jiang, E. Barnett, and C. Gosselin, “Dynamic Point-to-Point Trajectory Planning beyond the 
Static Workspace for Six-DOF Cable-Suspended Parallel Robots,” IEEE Transactions on 
Robotics, vol.34, no.3, pp.781-793, 2018. Article(CrossRefLink) 

[8] S. Liu, S. Huang, X. Xu, J. Lloret, K. Muhammad, “Efficient Visual Tracking Based on Fuzzy 
Inference for Intelligent Transportation Systems,” IEEE Transactions on Intelligent 
Transportation Systems, vol.24, no.12, pp.15795-15806, 2023. Article(CrossRefLink) 

[9] N. A. N. M. N. Azman, N. H. Abd Rahman, S. S. Md Sawari, S. A. Abas, S. A. A. Latif, “The 
tourists’ spatial behaviour and tourist movement pattern in Muar Johor,” Planning Malaysia, 
vol.19, no.2, pp.275-286, 2021. Article(CrossRefLink) 

[10] K. Mangalam et al., “It Is Not the Journey But the Destination: Endpoint Conditioned Trajectory 
Prediction,” in Proc. of Computer Vision – ECCV 2020, vol.12347, pp.759-776, 2020. 
Article(CrossRefLink) 

[11] D. Sternad and S. Schaal, “Segmentation of endpoint trajectories does not imply segmented 
control,” Experimental Brain Research, vol.124, no.1, 1999. Article(CrossRefLink) 

[12] X. Qin, Z. Li, K. Zhang, F. Mao, X. Jin, “Vehicle Trajectory Prediction via Urban Network 
Modeling,” Sensors, vol.23, no.10, 2023. Article(CrossRefLink) 

[13] J. F. W. Zaki, A. M. T. Ali-Eldin, S. E. Hussein, S. F. Saraya, and F. F. Areed, “Time Aware 
Hybrid Hidden Markov Models for Traffic Congestion Prediction,” International Journal on 
Electrical Engineering and Informatics, vol.11, no.1, 2019. Article(CrossRefLink) 

[14] S. Y. Han, Q. Zhao, Q. W. Sun, J. Zhou, Y. H. Chen, “EnGS-DGR: Traffic Flow Forecasting 
with Indefinite Forecasting Interval by Ensemble GCN, Seq2Seq, and Dynamic Graph 
Reconfiguration,” Applied Sciences, vol.12, no.6, 2022. Article(CrossRefLink) 

[15] L. Wu, X. Wei, L. Meng, S. Zhao, and H. Wang, “Privacy-preserving location-based traffic 
density monitoring,” Connection Science, vol.34, no.1, pp.874-894, 2022. Article(CrossRefLink) 

[16] P. Pokorny, B. Skender, T. Bjørnskau, and M. P. Hagenzieker, “Video observation of encounters 
between the automated shuttles and other traffic participants along an approach to right-hand 
priority T-intersection,” European Transport Research Review, vol.13, 2021. 
Article(CrossRefLink) 

[17] S. Liu, S. Huang, S. Wang, K. Muhammad, P. Bellavista, J. Del Ser, “Visual tracking in complex 
scenes: A location fusion mechanism based on the combination of multiple visual cognition 
flows,” Information Fusion, vol.96, pp.281-296, 2023. Article(CrossRefLink) 

[18] H. Rong, A. P. Teixeira, C. Guedes Soares, “Maritime traffic probabilistic prediction based on 
ship motion pattern extraction,” Reliability Engineering & System Safety, vol.217, 2022. 
Article(CrossRefLink) 

[19] S. Liu et al., “Human Inertial Thinking Strategy: A Novel Fuzzy Reasoning Mechanism for IoT-
Assisted Visual Monitoring,” IEEE Internet of Things Journal, vol.10, no.5, pp.3735-3748, 2023. 
Article(CrossRefLink) 

[20] A. Rossi, G. Barlacchi, M. Bianchini, B. Lepri, “Modelling Taxi Drivers’ Behaviour for the Next 
Destination Prediction,” IEEE Transactions on Intelligent Transportation Systems, vol.21, no.7, 
pp.2980-2989, 2020. Article(CrossRefLink) 

[21] L. Zhao et al., “T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction,” 
IEEE Transactions on Intelligent Transportation Systems, vol.21, no.9, pp.3848-3858, 2020. 
Article(CrossRefLink) 

https://doi.org/10.1016/j.rser.2017.09.108
https://doi.org/10.3390/drones7010062
https://doi.org/10.1016/j.trc.2019.07.005
https://doi.org/10.3390/s22134908
https://doi.org/10.1109/TRO.2018.2794549
http://doi.org/10.1109/TITS.2022.3232242
https://doi.org/10.21837/pm.v19i16.970
http://doi.org/10.1007/978-3-030-58536-5_45
http://doi.org/10.1007/s002210050606
http://doi.org/10.3390/s23104893
http://doi.org/10.15676/ijeei.2019.11.1.1
http://doi.org/10.3390/app12062890
http://doi.org/10.1080/09540091.2021.1993137
http://doi.org/10.1186/s12544-021-00518-x
http://doi.org/10.1016/j.inffus.2023.02.005
http://doi.org/10.1016/j.ress.2021.108061
http://doi.org/10.1109/JIOT.2022.3142115
http://doi.org/10.1109/TITS.2019.2922002
http://doi.org/10.1109/TITS.2019.2935152


1748               Zain Ul Abideen et al.: Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning 
                                                                                                                             via Predictive Modeling of Future Location 

Zain Ul Abideen, currently serving as a Postdoctoral Researcher at the Automotive 
Engineering Research Institute, Jiangsu University, brings a wealth of exper- tise in the 
realm of Computer Science. Graduating with a PhD in Computer Science from Xi'an 
Jiaotong University, China in 2022, his doctoral research focused on deep learning 
applications within the domains of urban computing and Intelligent transpor- tation systems 
(ITS) with spatial-temporal features. During his doctoral tenure, Zain conducted extensive 
research exploring the intricacies of traffic flow pre- diction, the utilization of deep learning 
methodologies in understanding small city dynamics, and thintegration of spatial-temporal 
features for enhancing intelligent transportation systems. His work has gar- nered 
recognition within academic circles for its inno- vative approaches and potential to address 
pressing urban challenges.  

Xiaodong Sun (Senior Member, IEEE) received the BSc degree in Electrical Engineering 
and the MSc and PhD degrees in Control Engineering from Jiangsu University, Zhenjiang, 
China, in 2004, 2008, and 2011, respectively. Since 2004, he has been with Jiangsu 
University, where he is currently a Professor in vehi- cle engineering with the Automotive 
Engineering Research Institute. From 2014 to 2015, he was a Visit- ing Professor with the 
School of Electrical, Mechani- cal, and Mechatronic Systems, University of Technology 
Sydney, Sydney, Australia. His current teaching and research interests include electrified 
vehicles, electrical machines, electrical drives, and energy management. He is the author or 
coauthor of more than 100 refereed technical papers and one book, and he is the holder of 42 
patents in his areas of interest. Dr. Sun is an Associate Editor of IEEE Trans- actions on 
Industrial Electronics, an Associate Editor of IEEE Transactions on Transportation 
Electrifica- tion, and an Editor of IEEE Transactions on Energy Conversion.  

Chao Sun was born in Nangtong, Jiangsu, China, in 1995. He received the BSc degree in 
Electrical Engi- neering from Yangzhou University, Yangzhou, China, in 2018, and the MSc 
degree in Electrical Engineering in 2022 from Jiangsu University, Zhenjiang, China, where 
he is currently working toward the PhD degree in Vehicle Engineering. His current research 
interests are the bearingless induction motor and its intelligent control technology.  

 
 

 
 

Hafiz Shafiq Ur Rehman Khalil is a PhD candidate at Xian Jiaotong University in China. 
His Areas of research are machine learning, deep learning, and information security. 


