• Title/Summary/Keyword: enclosed

Search Result 803, Processing Time 0.031 seconds

Evaluation of Ventilation Systems in an Enclosed Growing Pig House (무창육성돈사의 환기시스템에 따른 환기효율 평가)

  • Song, J.I.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2002
  • An experiment was conducted to evaluate a ventilation system, which was devised to encourage farmers to use the enclosed growing and finishing pig housing system. A roof-air-entry ventilation system in winter and a side-wall-air-entry system in summer were evaluated. Air flow rate on the floor level which is the low part of pen and the living area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.19 m/s at the minimum ventilation efficiency of 1,440 $m^{3}/h$. During summer the air flow rate was detected at 0.07 to 0.42 m/s at the maximum ventilation efficiency of 24,000 $m^{3}/h$. Therefore, it is concluded that the side-wall ventilation system is suitable for growing and finishing pigs in the enclosed house during the days of mid-summer and the roof-ventilation system was suitable during the coldest days of mid-winter. In addition, although the enclosed pig house has the system in which air exhausts through only one side wall, air should enter through both-side walls for the better ventilation performance.

The Safety Assessment for Ventilation Facilities of Underground Power Plant (지하 발전소 환기설비에 대한 안전성 평가)

  • Ko, Won-Kyoung;Kang, Seung Kyu;Jeong, Young-Dae;Kim, Young Gu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

Static and Structural Analyses of the Link of a Double-Action Link-Type Hydraulic Die Set (폐쇄단조용 복동링크유압식 다이세트의 링크의 정역학적 해석과 구조해석)

  • Eom J.G.;Jun B.Y.;Joun M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.93-94
    • /
    • 2006
  • This paper presents the mechanics of the link of a double-action link-type hydraulic die set for the enclosed die forging. The force exerted on the link is statically investigated and its structural analysis is carried out.

  • PDF

Seasonal Variation Patterns of Tidal Flat Sediments in Semi-enclosed Hampyong and Kwangyang Bays, West and South Coasts of Korea (한반도 서해안과 남해안의 반페쇄된 만에서 조간대 퇴적물의 계절변화에 관한 비교 연구: 서해안의 함평만과 남해안의 광양만)

  • Ryu, Sang-Ock
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.578-591
    • /
    • 2003
  • To investigate the seasonal variation patterns of tidal flat sediments in semi-enclosed Hampyong and Kwangyang Bays, respectively west and south coasts of Korea, accumulation rate and grain-size in the sediments were monitored during 2${\sim}$4 years. The mud flats in the northern and eastern parts of Hampyong Bay were eroded in summer and deposited in winter, but mixed flats in the southern part of the bay show reversed seasonal variations to the mud flats. These variations are most likely connected with wave actions induced by monsoon and physiographic setting of the tidal flats in the bay. In contrast, the tidal flats of Kwangyang Bay were eroded in summer and deposited in other seasons except summer, different from the case of Hampyong Bay. The physiography of Kwangyang Bay are characterized by dominant flood tides and weak wave actions. However, in summer, the surface sediments were abruptly eroded by occasional typhoons and heavy rainfall. These weather conditions appear to be important factors to accelerate erosion on the tidal flat in semi-enclosed bays, south coast of Korea.

Effects of Ventilation Types on Interior Environment of the Enclosed Farrowing-Nursery Pig House (무창 분만 ${\cdot}$ 자돈사 환기 형태가 돈사내 환경에 미치는 영향)

  • Yoo, Y.H.;Song, J.I.;Kang, H.S.;Jeon, B.S.;Kim, T.I.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • This study was conducted to collect basic data about the effects of ventilation types on the interior environment of the enclosed farrowing-nursery pig house in Anseong, Icheon and Jeungpyong. Surveyed ventilation types in the enclosed farrowing-nursery pig house are classified in to 4 types. In V1 type, air enters through a planar slot inlet placed on the juncture of the entering wall and exit through the chimney fan outlet; in V2 type, air enters through a perforated ceiling inlet and exits chimney fan outlet(V2); in V3 type, air enters through a circular duct inlet and exit chimney fan outlet(V3); in V4 type, enters through a circular duct inlet and exits side wall exhaust fan outlet(V4). Temperature, relative humidity, air velocity and ammonia concentration($NH_3$) were measured in the interior of swine building in the summer. Interior temperature was not remarkably different in all ventilation types in this study. However, temperature of the V4 was somewhat lower than that of the other types. Air velocity of the V4 was higher and $NH_3$ concentration of the V4 was lower than those of other ventilation types. It is suggested that the V4 ventilation type be applicable in the enclosed farrowing-nursery pig house in Korea.

  • PDF

Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics (높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • In order to safely protect high over current flowing into the main circuit at short-circuit without any explosion or fire, the enclosed cartridge fuse with a high interrupting capacity should be applied. But this fuse is impossible to be applied to an inner electronic circuit because of a limited space problem result from the miniaturization trend of products. Therefore, it is necessary to apply a sub-miniature fuse with a relatively small size. However the semi-enclosed fuse which is more free for an influx of air than the enclosed cartridge fuse and is possible to protect fuse elements with chemical and physical combination can be adoptable. But it has a limit of implementing the characteristic of a high breaking capacity. For these reasons, the Fe-42wt%Ni fuse elements alloy and fuse-link with less space were designed to increase a breaking capacity of sub-miniature fuse and its safety for fire and explosion was confirmed in this paper.

Effects of Daylight and Solar Radiation on Indoor Thermal Environment According to Space Structures in Multi-Complex Cultural Center (복합문화시설내 공간 구조에 따른 일조와 일사가 실내 온열환경에 미치는 영향)

  • Choi, Byungbo;Jeon, Hyun Sik;Yoon, Seokil;Kim, Sughwan;Lee, Sang-Jin;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.751-758
    • /
    • 2012
  • Recently, people are paying attention to new forms of construction. For example, deviated from an enclosed type space, people have been interested in an atrium type and an arcade type spaces. In this study, we had hypothesis 'Indoor thermal environment will be influenced by the inflow rate of natural lights with temperature and humidity.' We selected a multi-complex cultural center and conducted this study. This place is consisted of atrium, arcade, and enclosed types. The three spaces were classified according to the type of spaces that have own features along with their forms. The atrium type space has ceiling and the side windows, and the arcade type space has ceiling windows. On the other hand, there are no windows or open parts in the enclosed type space. Three measurement points at each space were selected because of their huge space. Intensity of illumination, temperature and humidity were confirmed by the average value of three measurement points. In addition, surveys were conducted regarding indoor comfort elements in each space.

A computational study on the removal of the non-isothermal concentrated fume from the semi-enclosed space

  • Chang, Hyuksang;Seo, Moonhyeok;Lee, Chanhyun
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.216-223
    • /
    • 2017
  • For the prediction of the ventilation rate for removing the non-isothermal concentrated fume from the semi-enclosed space, the computational fluid dynamics (CFD) analysis was done. Securing the proper ventilation conditions in emergency state such as in fire is crucial factor for the protection of the resident in the space. In the analysis for the determining the proper ventilation rate, the experimental study had the limitation for simulating the versatile conditions of fume development. The theoretical and computational method had been chosen as the alternate tool for the experimental analysis. In this study, the CFD analysis was done on the defined model which already had been done the experimental analysis by the previous workers. By comparing the prediction on the plume heights and the ventilation rates by the CFD analysis at, and in the parametric model of $1m^3$ with those of the previous experimental works, the feasibility of the computational analysis was evaluated. For the required ventilation rate analyzed by the CFD analysis was over predicted in 7.1% difference with that of the experimental results depending on the different plume height. With the comparison with the analytical Zukoski model at, the CFD analysis on the ventilation was under predicted in 8.3%. By the verification of the feasibility of the CFD analysis, the extended analysis was done for getting the extra information such as the water vapor distribution and $CO^2$ distribution in the semi-enclosed spaces.

Comparison of Ventilation Efficiency in an Enclosed and Conventional Growing-Finishing Pig House (개방형과 무창형 육성비육돈사의 환기효율 비교)

  • Song, J.I.;Choi, D.Y.;Jung, J.W.;Yang, C.B.;Choi, H.L.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.459-468
    • /
    • 2004
  • An experiment was conducted to establish comparison of ventulation efficiency in an enclosed and conventional growing-finishing pig house. The main results of the experiment are as follows : In the established temperature was sustained at the level of summer 24.8${\sim}$29.1$^{\circ}C$, winter 17.9${\sim}$23.1$^{\circ}C$ during the experimental period of enclosed growing-finishing pig house, and conventional growing-finishing pig house was at the lovel of summer 24.7${\sim}$32.3$^{\circ}C$, winter 14.5${\sim}$18.2$^{\circ}C$ during the experimental period respectively. As for the results of dertimental gas(ammonia) concentration ratio analysis, while the conventional pig house sustained of summer 9.3${\sim}$16.9 mg/$\ell$ level, enclosed growing-finishing pig house sustained of summer 7.9${\sim}$16.1 mg/$\ell$, and the latter one is lower than that of the conventional growing-finishing pig house. Air flow rate on the floor level which is the low part of pen and the active area of pigs in the enclosed growing and finishing pig house during winter was measured at 0 to 0.87 m/s at the 0.01 to 2.73 m/s at the maximum ventilation efficiency. As for breeding pigs in summer, the pigs from the conventional pig house weighed 100.2kg, on the other hand, the pigs from enclosed growing-finishing pig house weighed 107.3 kg ; the differnce between the two kinds was about 7 kg. This was because the most adequate environment, which was not influenced by the exterior atmosphere, was offered to the pigs from enclosed growing-finishing pig house, and all of this could reduce pigs stress effectively.