• Title/Summary/Keyword: enantiopure

Search Result 34, Processing Time 0.018 seconds

Enantioselective Kinetic Resolution of Racemic Styrene Oxide using Recombinant Marine Fish Epoxide Hydrolase of Mugil cephalus (해양 어류 Mugil cephalus 유래의 에폭사이드 가수분해효소를 이용한 라세믹 styrene oxide의 입체선택적 분할 반응)

  • Choi, Sung Hee;Kim, Hee Sook;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.491-496
    • /
    • 2008
  • The microsomal epoxide hydrolase gene (referred to as mMCEH) of Mugil cephalus was cloned by PCR, and then inserted to pColdI and pET-21b(+) vector, respectively. The recombinant E. coli possessing the recombinant plasmids exhibited the enantioperference toward (R)-styrene oxide. When enantioselective kinetic resolutions were conducted with 20 mM racemic styrene oxide, enantiopure (S)-styrene oxide was obtained with high enantiopurity more than 99% enantiomeric excess (ee) and 24.50% yield by using the recombinant E. coli harboring pET-21b(+)/mMCEH.

Development of Recombinant Pseudomonas putida Containing Homologous Styrene Monooxygenase Genes for the Production of (S)-Styrene Oxide

  • Bae, Jong-Wan;Han, Ju-Hee;Park, Mi-So;Lee, Sun-Gu;Lee, Eun-Yeol;Jeong, Yong-Joo;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.530-537
    • /
    • 2006
  • Recently isolated, Pseudomonas putida SN1 grows on styrene as its sole carbon and energy source through successive oxidation of styrene by styrene monooxygenase (SMO), styrene oxide isomerase (SOI), and phenylacetaldehyde dehydrogenase. For the production of (S)-styrene oxide, two knockout mutants of SN1 were constructed, one lacking SOI and another lacking both SMO and SOI. These mutants were developed into whole-cell biocatalysts by transformation with a multicopy plasmid vector containing SMO genes (styAB) of the SN1. Neither of these self-cloned recombinants could grow on styrene, but both converted styrene into an enantiopure (S)-styrene oxide (e.e. > 99%). Whole-cell SMO activity was higher in the recombinant constructed from the SOI-deleted mutant (130 U/g cdw) than in the other one (35 U/g cdw). However, the SMO activity of the former was about the same as that of the SOI-deleted SN1 possessing a single copy of the styAB gene that was used as host. This indicates that the copy number of styAB genes is not rate-limiting on SMO catalysis by whole-cell SN1.

Enantioselective Hydrolysis for Preparing (S)-Styrene Oxide in Organic Solvents Using Recombinant Escherichia coli Expressing Protein-engineered Epoxide Hydrolase of Mugil cephalus (Mugil cephalus 유래 에폭사이드 가수분해효소를 발현하는 재조합 대장균을 이용한 유기용매에서의 (S)-Styrene Oxide 제조를 위한 입체선택적 가수분해 반응)

  • Lee, Ok Kyung;Lee, Eun Yeol
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.599-603
    • /
    • 2012
  • The enantioselective hydrolysis of racemic styrene oxide in organic solvents was conducted using a recombinant E. coli expressing protein-engineered Mugil cephalus epoxide hydrolase (McEH). The volumetric total activity of the recombinant E. coli was enhanced 2.2-fold by IPTG induction at a mid-exponential growth phase. Among organic solvents with different log P values, isooctane was chosen based on the high activity and the enantioselectivity of McEH. Some lyoprotectants such as skim milk or sucrose enhanced the McEH activity. Enantiopure (S)-Styrene oxide with a 98% ee was obtained from the racemic styrene oxide with a 53.6% yield based on its theoretical yield in isooctane.

Synthesis of Enantiopure Epoxide Compounds Using Dimeric Chiral Salen Catalyst (이량체구조를 갖는 키랄 살렌 촉매를 이용한 고 광학순도의 에폭사이드 화합물 합성)

  • Kim, Geon-Joong;Kim, Seong-Jin;Li, Wenji;Chen, Shu-Wei;Shin, Chang-Kyo;Thakur, Santosh S.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.647-661
    • /
    • 2005
  • The stereoselective synthesis of chiral terminal epoxide is of immense academic and industrial interest due to their utility as versatile starting materials as well as chiral intermediates. In this review, we investigate the research and development trend in the asymmetric ring opening reactions using cobalt salen catalysts. Hydrolytic kinetic resolution (HKR) technology is the very prominent way to prepare optically pure terminal epoxides among available methods. We have synthesized homogeneous and heterogeneous chiral dinuclear salen complexes and demonstrated their catalytic activity and selectivity for the asymmetric ring opening of terminal epoxides with variety of nucleophiles and for asymmetric cyclization to prepare optically pure terminal epoxides in one step. The resolved ring opened product combined with ring closing in the presence of base and catalyst afforded the enantioriched terminal epoxides in quantitaive yield. Potentially, these catalysts are using on an industrial scale to produce chiral intermediates. The experimental results of HKR technology applied to the synthesis of various chiral compounds are presented in this paper.