• Title/Summary/Keyword: emulsion method

Search Result 422, Processing Time 0.026 seconds

Preparation and Characterization of PP-g-Poloxamer Membranes by UV Irradiation Methods and their Solutes Permeation Behaviors

  • Lee, S. H.;Shim, J. K.;Lee, Y. M.;Ahn, S. H.;Yoo, I. K.;Baek, K. H.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.97-98
    • /
    • 1998
  • 1. Introduction : Polypropylene(PP) membrane is widely used in the field of microfiltration and ultrafiltration. However, the hydrophobicity of PP causes the adsorption of hydrophobic and amphoteric solutes in the feed. Surface modification techniques of membrane through the treatment of hydrophilizing agents, coating of hydrophilic compounds, UV, plasma and high energy irradiation, etc. can have a great effect on propensities to prevent the protein from staining membranes. Among them, the modification to hydophilize membrane surface using UV is very simple and effective. Recently many studies for more effective surface modification have been conducted. Iwata et al. prepared membranes by grafting polyethylene glycol diacrylate macromer(PEGDA) onto polysulfone with plasma using a glow discharge reactor which prevent the oil from staining the membrane. The primary mechanism contributing to the membranes is preventing the oil from directly contacting the surface of the membrane as the PEGDA chains dissolved into emulsion. To evaluate their feasibility for use as a anti-fouling separation membrane, we prepared hydrophilic membranes by UV irradiation method and investigated their characteristics.

  • PDF

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.

Phagocytic Uptake of Surface modified PLGA Microspheres Using Dendritic Cell

  • Kim, Ji-Seon;Lee, Young-Sung;Lee, Jung-Gil;Park, Jeong-Sook;Lee, Jong-Kil;Chung, Youn-Bok;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • The purpose of this study was to evaluate the phagocytic uptake of surface modified PLGA microspheres containing ovalbumin (OVA) into dendritic cell. In order to find the most suitable formulation for targeted delivery to antigen presenting cells (APC), OVA was encapsulated by a double emulsion solvent evaporation method with three PLGA microspheres (PLGA 50:50, PLGA 75:25 and PLGA 85:15) and two surface modified microspheres by chitosan and sodium dodecyl sulfate (SDS). Physicochemical properties were evaluated in terms of size, zeta potential, encapsulation efficiency, different scanning calorimeter (DSC), x-ray diffraction, morphology, and OVA release test from microspheres. Phagocytic activity was estimated using dendritic cells and analyzed by fluorescence activated cell sorter (FACS). The result showed that zeta potential of PLGA particles was changed to positive by the chitosan modification. The release profile of chitosan modified PLGA microspheres exhibited sustained release after initial burst. The chitosan modified microspheres had higher phagocytic uptake than the other microspheres. Such physicochemical properties and phagocytic uptake studies lead us to conclude that chitosan modified microspheres is more suitable formulation for the targeted delivery of antigens to APC compared with the other microspheres.

Synthesis of Silicone Softner for Permanent Press Finish and Its Characterization (Permanent Press 가공용 실리콘 유연제의 합성과 그의 특성화)

  • Park, Chang-Hwan;Kim, Seung-Jin;Kim, Young-Geun;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 1995
  • Silicone softner(SSN-3) for permanent press(PP) finish was prepared by blending beef tallow hardened oil for Improving softness, water, the emulsion, which was synthesized from pentaerythritol monostearate as a softening component and silicone oil KF-96 as a lubricating component. The prepared SSN-3 and the PP finishing resin were applied to PP finishing cotton broad cloth and P/C gingham samples using one bath method. The properties such as crease recovery, tear strength, bending resistance test were tested. The samples treated with SSN-3 and PP finishing resin have improved properties, compared with nontreated samples, those treated only with PP finishing resin, those treated with commercial PP finishing softners and PP finishing resin. Also from the bending resistance test, the two kinds of fabric samples treated with SSN-3 of 3% showed grade 5 and these were good enough in feeling.

Low Voltage and Rapid Response Time Electrophoretic Display

  • Lee, Y.E.;Cho, Y.T.;Choi, Y.G.;Park, S.C.;Lee, M.H.;Park, Y.M.;Kim, D.Y.;Kim, C.H.;An, C.H.;Kim, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.360-363
    • /
    • 2009
  • In this paper, we describe new approach of ink particle fabrication method for electrophoretic display(EPD) with low voltage and rapid response time. Nano-size ink particles which fabricated using non-aqueous base modified emulsion process and micron-scale particles by non-solvent particle fabrication process are discussed. Finally, specially designed particles and panel structure fabricated considering the interactions between particle/particle, particle/media or particle/electrode dramatically reduce the driving voltages to ${\pm}$ 10V and improve the response time of less than 100msec and white reflectance of 58% for EPD using dielectric fluid as a medium. In case of EPD adapting micron-sized electrophoretic particles and a medium of air, the saturation voltage could be reduced to ${\pm}$ 40V and having white reflectance of 45% without scarification of electrophoretic mobility of the particles.

  • PDF

Studies on the substitution pigment of Dan-Chung (양록단청 대체안료 개발 연구)

  • Kim, Sa-Dug;Kim, Soon-Kwan;Hong, Jung-Ki;Kang, Da-Il;Lee, Myong-Hee
    • 보존과학연구
    • /
    • s.20
    • /
    • pp.121-137
    • /
    • 1999
  • Among pigment used at work of Dan-Chung, Emerald Green is specific illuminating fluorescent light of green. It is very difficult to change other organic or inorganic pigment. All of the internal high class pigment has rare light. But Emerald Green is superior to fresh color and stability out of industrial chemical products. It forms over 50% of quantity and importance of a pattern painting. Emerald Green prohibited to produce because of its toxicpollutants, so required to changing pigment development. It is characterized to excellent color, convenient work, economical, against-sunlight, against-air pollutant and durability. The result of a test is follows; 1. We are investigated into producing internal natural Emerald Green, import external pigment and industrial synthesis method etc. but unable to buy because of its toxic pollutant. 2. We are made six samples by yellowish and green is hpigment mixing. We tested on against sunlight and air pollutant. The best mixing ratio is follows. Titanium Dioxide R760 : 18g- Chalk, White Wash : 10g- Permanent Yellow : 7g- Cyanine Green : 8g- Chrome Yellow : 3g- Resin(Vehicle) : Acryl Emulsion(Styrene + 2-Ethyl HexylAcrylate + Methyl Meth Acrylate) 8%

  • PDF

Characteristics of Tetanus Toxoid Loaded in Biodegradable Microparticles (파상풍 톡소이드를 함유한 생체분해성 미립구의 특성)

  • 김지윤;김수남;백선영;이명숙;민홍기;홍성화
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.293-299
    • /
    • 2000
  • Biodegradable microspheres made from poly-lactide-co-glycolide polymers have been considered as a new delivery system for single-dose vaccine. Purified tetanus toxoid (TT) was encapsulated in poly-lactide(PLA) and poly-lactide-co-glycolide (PLGA) microparticles using a solvent evaporation method in a multiple emulsion system (water-in oil-in water). The morphology of 77-loaded microparticles was spherical and the suface of them was smooth. The particle size was in a range of 2-10. Protein loading efficiency was 68-97.8%. PLGA (85:15) microparticle showed the highest efficiency. Protein release pattern was influenced by polymer molecular weight and composition. The release rate of PLA(Mw 100,000) microsphere was higher than any other microspheres. In consequence of the hydrolysis of PLGA(50:50) microspheres, environmental pH decreased from 7.4 to 5.0. The PLA, PLGA (75:25) and PLGA (85:15) microshperes showed no significant pH change. The antigenicity or n in microshperes was assayed by indirect sandwich ELISA using equine polyclonal tetanus antitoxin for capture antibody and human polyclonal tetanus antitoxin for primary antibody. The antigenicity of TT in PLA (Mw 100,000), PLGA(50:50, Mw 100,000) and PLGA (75:25, Mw 73,300) after 30 days incubation showed 54, 40.9 and 76.7%, respectively.

  • PDF

Controlled Release of Cyclosporin A from Liposomes-in-Microspheres as an Oral Delivery System

  • Park, Hee-Jung;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.526-529
    • /
    • 2006
  • The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to $10\;{\mu}m$, and that of the EPS-LIMs was about $100\;{\mu}m$. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.

Synthesis and Properties of Gemini Type's Diethylene Glycol Dicarboxylates (제미니형 디에틸렌글리콜 디카르복실레이트 류의 합성 및 특성)

  • Choi, Eun-Ji;Jeon, Young-Soo;Lee, Jae-Duk;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.257-265
    • /
    • 2010
  • This study concerned about "Gemini type co-surfactant" which has very interesting properties with new components. They were synthesized by reaction of diethylene glycol monoethyl ether and dicarboxylic acid. The structure could be comfirmed with FT-IR and $^1H$-NMR. Surface active properties such as surface tension, evaluated cmc, cloud point, emulsing power were measured respectively at given conditions. Their surface tensions in the aqueous solution were decreased to 33~35 dyne/cm, which was lower than 39 dyne/cm of SDS, and their cmc values evaluated by surface tension method were $5.0{\times}10^{-1}\sim7.5{\times}10^{-1}$ mol/L. And the emulsifying power was excellent in jojoba oil. All of the synthesized Gemini surfactants possessed good water solubility and their cloud point were $48\sim58^{\circ}C$. As results, Gemini surfactants which were synthesized are expected to be applied as O/W emulsifiers.

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.