• Title/Summary/Keyword: emulsifying salts

Search Result 12, Processing Time 0.027 seconds

Synthesis of Some Phosphated Fatty acyl Derivatives of Mannitol and Their Evaluation

  • Jain, Sanjay;Tripathi, Meena;R.K.Uppadhyay;D.V.Kohli
    • Archives of Pharmacal Research
    • /
    • v.12 no.4
    • /
    • pp.233-235
    • /
    • 1989
  • Sodium salts of phosphated capric and myristic acyl derivatives of mannitol were prepared and evaluated for surface activity, foam characteristics and emulsifying properties. Triacyl mannitols of cappric and myristic acid have better emulsifying property than the corresponding di and monocompounds.

  • PDF

Influences of Ingredients and Melting Temperatures on the Physicochemical Properties of Process Cheese (첨가물질 및 용융온도가 가공치즈의 이화학적 특성에 미치는 영향)

  • Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.710-713
    • /
    • 1989
  • Process cheeses were made in a laboratory with natural cheese, water, butter, and emulsifying salts varying in quantity and temperature. With the emulsifying salts, the hardness of process cheese varied from 286 to 580g, the pH values 5.1-5.9 and the solid content 56.8-63.7%. The water activity measured 0.96-0.98, the crude protein content 27.1-27.7%, the crude fat content 58.3-59.9% and the ratio of protein to fat 45.3-47.5%. The various properties of samples showed no natable difference. Increasing the water addition, the hardness and the ratio of the protein to fat decreased, while both the pH values and the water activity increased. With increasing the melting temperatures from 75 to 80, 85, 90 and $95^{\circ}C$. The other indices showed no remarkable differences among the samples.

  • PDF

The Synthesis and Surface Properties of N-Acyl-N-Methyl Taurates (N-아실-N-메틸 타우린 염류의 합성 및 계면성)

  • Jeong, No-Hee;Nam, Ki-Dae;Kim, Tae-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • New five N-acyl-N-methyl taurate and their sodium salts were synthesized by acylating sodium N-methyl taurate in water in the presense of inorganic alkali as a catalyst. Wherein acyl group is a straight-chain radical of 10 to 18 carbon atoms. These compounds were identified by infrared spectroscopy. Surface activities of these sodium N-acyl-N-methyl taurate including surface tension, Ross-Miles foaming powers, foam stabilities, emulsifying powers and detergency were measured respectively. Also critical micelle concentration(cmc) were evaluated. Consequently these anionic surfactants with long chain acyl amine showed good emulsifying power of O/W type and had a good detergence.

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

A Study on the Adsorption at Oil-Water Interface and the Emulsion Stabilizing Properties of Soy Protein Isolate (분리 대두단백질의 기름-물 계면흡착 과 유화안정성에 관한 연구)

  • Kim, Young-Sug;Cho, Hyung-Yong;Cho, Eun-Kyung;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.468-474
    • /
    • 1986
  • The emulsifying properties of soy protein isolate were measured at various conditions, and the relationships between the emulsifying properties and solubility, viscosity, hydrophobicity, protein adsorption, the tension at water-oil interface were investigated. The emulsifying properties are minimum at the isoelectric point(pI), and the effect of pH parallels its effect on protein solubility. The emulsifying activity is increasing up to $50^{\circ}C$ and then is somewhat decreasing above that temperature, while the emulsion stability is continuously decreasing. Except for phosphates, the salts cause the decrease of the emulsifying properties. The hydrophobicity is increasing as the temperature increases and decreasing somewhat as pH gets lower. However, it is increasing substantially at pH below the pI. The maximum protein adsorption at the water-oil interface is 0.78, 0.47, and $0.33mg/m^2$ at pH 2, 7, and 4, respectively. The tension at water-oil interface is 19.76 dyne/cm in the absence of soy protein, whereas it is decreasing to 11.45-18.08 dyne/cm in the presence of the protein.

  • PDF

USE OF FOULING RESISTANT NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES FOR DYEING WASTEWATER EFFLUENT TREATMENT (막오염 저항성이 우수한 나노여과 및 역삼투막의 염색폐수 적용)

  • Myoung, Su-Wang;Park, In-Hwan;Ka, Young-Hyun;Kim, In-Chul;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.136-139
    • /
    • 2004
  • The dyeing effluent is a highly colored stream containing unfixed dyes along with salts and auxiliary chemicals such as emulsifying agents. Moreover, Textile dying is a chemically intensive process and consumes large quantities of water. Difficulties in the effluent treatment arise from its non-degradable property by aerobic digestion.(omitted)

  • PDF

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

Synthesis and Surface Active Properties of Diglycerol N-Acyl Glutamic Acid Esters (디글리세롤 N-아실 글루탐산 에스테르류의 합성 및 계면성)

  • Jeong, Hwan-Kyeong;Jeong, No-Hee;Nam, Ki-Dea
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.247-254
    • /
    • 1994
  • Nonionic surfactants, diglycerol N-acyl glutamates were prepared through the esterification of N-acryl glutamic acids and glycidol in the presence of quarternary ammonium salts. Their cmc evaluated by the surface tension method was $0.15{\sim}0.75mol/{\ell}$, and the surface tension of aqueous solution was decreased to 28~35dyne/cm. L-DGLG with acyl group of carbon number of 12 showed good foaming power and emulsifying power, and the emulsifying power in toluene was stronger than in soybean oil. Dispersion effect of L-DGPG and L-DGSG with acyl group of carbon number of 16 and 18 in carbon black and ferric oxide were higher than L-DGLG. All of them showed good biodegradability at $20^{\circ}C$.

  • PDF

Studies on the N-Acyl Amino Acid Type Surfactants(4) Surface Active Properties of N-Acyl-N-Methyl-β-Alanine Salts (N-아실 아미노산계 계면활성제에 관한 연구 (제 4 보) N-아실-N-메틸-β-알라닌 염류의 계면활성)

  • No, Seung-Ho;Lee, Sun-Ju;Kim, Tae-Young;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 1991
  • Surface activities of four potassium N-acyl-N-methyl-${\beta}$-alaninate including surface tension, foaming power, foam stability, emulsifying power and dispersion power were measured respectively, and critical micelle concentration(cmc) was evaluated. Consequently these anionic surfactants with long chain acyl amide showed good emusifying power of O/W type, foaming, foam stability and dispersion effect.

  • PDF

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF