• Title/Summary/Keyword: empty fruit bunch (EFB)

Search Result 31, Processing Time 0.028 seconds

Preparation and Evaluation of Tabletting properties of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunch (오일팜 EFB(Empty fruit bunch)를 이용한 MCC 제조 및 제제 적용성 평가)

  • Kim, Dong Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.46-55
    • /
    • 2016
  • The microcrystalline cellulose (MCC) was prepared from oil palm biomass, empty fruit bunch (EFB) for increasing the usability of EFB. The morphological, physical and chemical properties of MCC made from EFB were evaluated by comparing with those of the commercial MCC obtained from AVICEL. The EFB-MCC had the wider distribution in particle size and there were many small particles around $10{\mu}m$. There were no significant differences in the cellulose crytallinity and the chemical composition between EFB-MCC and AVICEL-MCC. The properties of tablet samples made by the common direct compression process were evaluated depending on the types of MCC and the compression pressure during tablet making process. The tablet made of EFB MCC showed the higher compressed structure, which resulted in the less disintegration by the water soaking treatment than those made of Avicel-MCC. The results of this study showed that the EFB-MCC could be utilized as one of the commercial MCC.

Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar

  • Lee, Hyung Won;Kim, Jae-Kon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.81-86
    • /
    • 2018
  • Empty fruit bunch (EFB) char was used to remove $NO_x$ and odorous substances. The physicochemical properties of the EFB chars were altered by steam or KOH treatments. The Brunauer-Emmett-Teller surface area and porosity were measured to determine the properties of the modified EFB chars. The $deNO_x$ and adsorption test for hydrogen sulphide and acetaldehyde were performed to determine the feasibility of the modified EFB chars. The KOH-treated EFB (KEFB) char revealed higher $deNO_x$ efficiency than with commercial activated carbon. The Cu-impregnated EFB char also had high $deNO_x$ efficiency at temperatures higher than $150^{\circ}C$. The KEFB char showed the highest hydrogen sulphide and acetaldehyde adsorption ability, followed by the steam-treated EFB char and untreated EFB char. Moreover, the product prepared by sulfonation of EFB char showed excellent performance for esterification of palm fatty acid distillate for biodiesel production.

Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products (팜 부산물에 존재하는 무기성분이 급속열분해 생성물의 특성에 미치는 영향)

  • Moon, Jaegwan;Lee, Jae Hoon;Hwang, Hyewon;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.629-638
    • /
    • 2016
  • In this study, the effect of inorganic constituents on the physicochemical properties of pyrolytic products produced from empty fruit bunch (EFB) by fast pyrolysis were investigated. Inorganic constituents were removed from the EFB by means of washing treatment with hydrofluoric acid (HF) and distilled water (D.I water). Ash content decreased from 6.2 wt% (EFB) to 2.4 wt% (HF-EFB) and 3.5 wt% (D.I-EFB), respectively. As a result of the inorganic component, a quantity of potassium in EFB has showed the highest removal efficiency in both HF and D.I water (HF: 80.3%, D.I water: 72.8%). Fast pyrolysis was performed with demineralized EFB in the fluidized bed reactor under the temperature of $500^{\circ}C$ at the residence time of 1.3 sec. The yield of bio-oil was determined to 57.3 wt% for HF-EFB and 52.1 wt% for D.I-EFB, respectively. Biochar yield decreased whereas yield of non-condensable gas increased with decreasing inorganic content of EFB. Water content decreased from 26.9% (EFB) to 9.9% (HF-EFB) and viscosity increased from 16.1 cSt (EFB) to 334 cSt (HF-EFB).

Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction (용탈처리와 습식 반탄화에 의한 Empty Fruit Bunch의 연료적 특성 향상)

  • Gong, Sung-Ho;Lee, Hyoung-Woo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.360-369
    • /
    • 2016
  • In this study, sequential leaching and wet torrefaction were performed to improve the fuel characteristics of empty fruit bunch (EFB). Leaching was carried out at $25{\sim}90^{\circ}C$ for 5~30 min. The highest ash removal efficiency of 55.99% was achieved when leaching was performed at $90^{\circ}C$ for 10 min. The ash removal efficiency was dependent more on leaching temperature than time. Wet torrefaction was carried out at $180{\sim}200^{\circ}C$ for 5~40 min, following the leaching. Most of the inorganic compounds were removed at removal efficiencies of 41.05~63.58% during sequential leaching and wet torrefaction, while silica remained in the biomass. Chloride, calcium, magnesium, and phosphorus showed more than 80% removal efficiencies. The calorific value of EFB increased to 7.96% (4730 kcal/kg) in comparison to the raw material (4390 kcal/kg) when wet torrefaction was performed at $200^{\circ}C$ for 40 min following leaching.

Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature (반응온도에 따른 팜 부산물(empty fruit bunch)의 열화학적 분해 특성에 관한 연구)

  • Lee, Jae Hoon;Moon, Jae Gwan;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.350-359
    • /
    • 2016
  • We performed fast pyrolysis of empty fruit bunch (EFB) in the range of temperature from $400{\sim}550^{\circ}C$ and 1.3 s of residence time. The effect of temperature on the yields and physicochemical properties of pyrolytic products were also studied. Elemental and component analysis of EFB showed that the large amount of potassium (ca. 8400 ppm) presents in the feedstock. Thermogravimetric analysis suggested that the potassium in the feedstock catalyzed degradation of cellulose. The yield of bio-oil increased with increasing temperature in the range of temperature from $400{\sim}500^{\circ}C$, while that of gas and biochar decreased and showed monotonous change each with increasing temperature. When the EFB was pyrolyzed at $550^{\circ}C$, the yield of bio-oil and char decreased while that of gas increased. Water content of the bio-oils obtained at different temperatures was 20~30% and their total acid number were less than 100 mg KOH/g oil. Viscosity of the bio-oils was 11 cSt (centistoke), and heating value varied from 15 to 17 MJ/kg. Using GC/MS analysis, 27 chemical compounds which were classified into two groups (cellulose-derived and lignin-derived) were identified. Remarkably the concentration of phenol was approximately 25% based on entire chemical compounds.

Hydrolysis of Empty Fruit Bunch of Oil Palm Using Cellulolytic Enzymes from Aspergillus terreus IMI 28243

  • Kader, Jalil;Krishnasamy, Getha;Mohtar, Wan;Omar, Othman
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.514-517
    • /
    • 1999
  • Hydrolysis of EFB (empty fruit bunch) derived from oil palm was studied using crude enzyme from Aspergillus terreus IMI 282743 along with commercial enzymes from Trichoderma reesei and Aspergillus niger. Hydrolysis at $40^{\circ}C$ and $50^{\circ}C$ with $\alpha$-cellulose or EFB gave significantly lower yield when commercial enzymes of T. reesei and A. niger were used and the hydrolysis time extended beyond 10 h. After 24 h of hydrolysis at $40^{\circ}C$ and $50^{\circ}C$, the filter paper activity (Fpase) from A. terreus retained as much activity as A. niger and it was significantly higher than T. reesei. Glucose concentration of 0.25% and 0.5% caused significant inhibition in the crude enzyme, but in regards to the commercial enzymes it only showed a slight effect. Crude enzymes from A. terreus could produce the highest reducing sugars when compared to commercial enzymes from T. reesei or A. niger. Nevertheless, low yield of sugar was observed for EFB for all treatments.

  • PDF

Basic Study on Oversea Biomass Energy Resources 1 - Palm Biomass (해외 바이오매스 에너지자원 확보를 위한 기초조사 1 - 팜 바이오매스)

  • Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.439-449
    • /
    • 2014
  • RPS (Renewable Portfolio Standard) has increased wood pellet demand dramatically in recent years in Korea where self-supply rate of wood pellet is not more than 10%. However global production capacity of wood pellet is prospected to be unable to meet the global demand after 2020. Therefore it is urgently needed to develop new sustainable biomass energy resources which can replace wood pellet at lower cost. As a result of this study EFB (empty fruit bunch) and MF (mesocarp fiber), the representative solid palm biomass, are estimated to be generated at the rate of 20 and 28 million tons per year (based on 10% moisture content) in Malaysia and Indonesia, respectively in 2012. Total annual generation rate of EFB and MF is estimated as 48 million tons per year only in Malaysia and Indonesia in 2012. With calorific value of over 90% of wood pellet EFB is expected to be a excellent biomass energy resource which can replace wood pellet. EFB can be utilized as fuel for power generation or industrial purpose. However EFB may not be a proper fuel for domestic and greenhouse heating because of its high ash content.

Effect of fibre loading and treatment on porosity and water absorption correlated with tensile behaviour of oil palm empty fruit bunch fibre reinforced composites

  • Anyakora, Anthony N.;Abubakre, Oladiran K.;Mudiare, Edeki;Suleiman, MAT
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.329-341
    • /
    • 2017
  • The challenge of replacing conventional plastics with biodegradable composite materials has attracted much attention in product design, particularly in the tensile-related areas of application. In this study, fibres extracted from oil palm empty fruit bunch (EFB) were treated and utilized in reinforcing polyester matrix by hand lay-up technique. The effect of fibre loading and combined influence of alkali and silane treatments on porosity and water absorption parameters, and its correlation with the tensile behaviour of composites was analyzed. The results showed that tensile strength decreased whilst modulus of elasticity, water absorption and porosity parameters increased with increasing fibre loading. The composites of treated oil palm EFB fibre exhibited improved values of 2.47 MPa to 3.78 MPa for tensile strength; 1.75 MPa to 2.04 MPa for modulus of elasticity; 3.43% to 1.68% for porosity and 3.51% to 3.12% for water absorption at respective 10 wt.% fibre loadings. A correlation between porosity and water absorption with tensile behavior of composites of oil palm EFB fibre and positive effect of fibre treatment was established, which clearly demonstrate a connection between processing and physical properties with tensile behavior of fibre composites. Accordingly, a further exploitation of economic significance of oil palm EFB fibres composites in areas of low-to-medium tensile strength application is inferred.

Effects of Pre-treatments on the Oil Palm EFB Fibers (오일팜 EFB 섬유의 전처리 영향 평가)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.36-42
    • /
    • 2012
  • The empty fruit bunch fibers(EFB) of oil palm were examined for optimal utilization of the EFB fibers. The EFB fibers were obtained by shredding EFB, followe by removal of fines. The surface properties of the fibers were modified with various pre-treatments, such as hot water extraction, the soaking treatments with NaOH, $ClO_2$ and n-hexane. The changes in the fiber surface were examined with FT-IR method, which showed the changes in chemical compositions such as pectin, lignin, and etc. according to the pre-treatment methods. And the z-directional tensile testing of the fiber mold made of the treated EFB fibers showed the changes in the bonding strength by the pre-treatments. The fiber mold made of EFB fibers treated with $ClO_2$ showed the greater increase in the tensile energy absorption although the NaOH treatment resulted in the severer impact on the EFB fibers.

Changes in the Process Efficiency and Product Properties of Pulp Mold by the Application of Oil Palm EFB (오일팜 EFB 섬유 적용에 따른 펄프몰드 공정효율 및 제품품질 변화)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The demand of environmental friendly packaging materials such as pulp mold has been increased. The application of the oil palm biomass, EFB (Empty Fruit Bunch) fiber as natural raw materials to the pulp mold could increase the usability of the pulp mold by the reduced production cost brought from the relatively low cost of EFB. The effects of the EFB(Empty Fruit Bunch) fibers on the properties of pulp mold and on the process efficiency were evaluated in this study. The pulp mold samples were prepared with mixture ONP (Old news paper) and EFB by using laboratory wet pulp molder. The changes in the drying efficiency were measured with the changes in the solid contents of pulp mold samples during drying process. The efficiency of the surface coating treatment on the pulp mold depending on the condition of the pulp mold samples were also evaluated in order to improve the water resistance properties of pulp mold. The addition of EFB increased the drying efficiency by providing the bulkier structure and the higher water contact angle, which indicated the better water resistance properties. The water resistance were improved by the surface coating treatments and the application of surface coating on the pulp mold at the higher moisture contents resulted in the higher improvement in the water resistance. The bulkier structure originated from the application of EFB fiber reduced the effects of the surface coating, which could be overcome by the control of surface coating process.