References
- Ahn, B.-J., Han, G.-S., Choi, D.-H., Cho, S.-T., Lee, S.-M. 2014. Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia. Journal of The Korean Wood Science and Technology 42(3): 231-243. https://doi.org/10.5658/WOOD.2014.42.3.231
- Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy 38: 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048
- Bridgwater, A.V., Meier, D., Radlein, D. 1999. An overview of fast pyrolysis of biomass. Organic Geochemistry 30(12): 1479-1493. https://doi.org/10.1016/S0146-6380(99)00120-5
- Demirbas, M.F., Balat, M. 2007. Biomass pyrolysis for liquid fuels and chemicals A review. Journal of Scientific and Industrial Research 66(10): 797-804.
- Eom, I.Y., Kim, K.H., Kim, J.Y., Lee, S.M., Yeo, H.M., Choi, I.G., Choi, J.W. 2011. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource Technology 102(3): 3437-3444. https://doi.org/10.1016/j.biortech.2010.10.056
- Eom, I.Y., Kim, J.Y., Kim, T.S., Lee, S.M., Choi, D., Choi, I.G., Choi, J.W. 2012. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource Technology 104: 687-694. https://doi.org/10.1016/j.biortech.2011.10.035
- Fahmi, R., Bridgwater, A.V., Donnison, I., Yates, N., Jones, J.M. 2008. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87(7): 1230-1240. https://doi.org/10.1016/j.fuel.2007.07.026
- Hwang, H., Oh, S., Kim, J.Y., Lee, S.M., Choi, T.S., Choi, J.W. 2012. Effect of Particle Size and Moisture Content of Woody Biomass on the Feature of Pyrolytic Products. Journal of The Korean Wood Science and Technology 40(6): 445-453. https://doi.org/10.5658/WOOD.2012.40.6.445
- Hwang, H., Oh, S., Cho, T.S., Choi, I.G., Choi, J.W. 2013. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Bioresource Technology 150: 359-366. https://doi.org/10.1016/j.biortech.2013.09.132
- Kerdsuwan, S., Laohalidanond, K. 2011. Renewable Energy from Palm Oil Empty Fruit Bunch. in: Renewable Energy - Trends and Applications, (Ed.) M. Nayeripour, InTech, pp. 123-150.
- Kim, K.H., Eom, I.Y., Lee, S.M., Choi, D., Yeo, H., Choi, I.-G., Choi, J.W. 2011. Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. Journal of Analytical and Applied Pyrolysis 92(1): 2-9. https://doi.org/10.1016/j.jaap.2011.04.002
- Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y., Cen, K. 2004. Research on biomass fast pyrolysis for liquid fuel. Biomass and Bioenergy 26(5): 455-462. https://doi.org/10.1016/j.biombioe.2003.04.001
- Mohan, D., Pittman, C., Steele, P. 2006. Pyrolysis of Wood Biomass for Bio-oil: A Critical Review. Energy & Fuels 20(3): 848-889. https://doi.org/10.1021/ef0502397
- Mu, D., Seager, T., Rao, P.S., Zhao, F. 2010. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion. Environmental Management 46(4): 565-578. https://doi.org/10.1007/s00267-010-9494-2
- Nowakowski, D.J., Jones, J.M. 2008. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis 83(1): 12-25. https://doi.org/10.1016/j.jaap.2008.05.007
- Oasmaa, A., Elliott, D.C., Korhonen, J. 2010a. Acidity of Biomass Fast Pyrolysis Bio-oils. Energy & Fuels 24(12): 6548-6554. https://doi.org/10.1021/ef100935r
- Oasmaa, A., Solantausta, Y., Arpiainen, V., Kuoppala, E., Sipila, K. 2010b. Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. Energy & Fuels, 24(2), 1380-1388. https://doi.org/10.1021/ef901107f
- Oh, S., Hwang, H., Choi, H. S., & Choi, J. W. 2015. The effects of noble metal catalysts on the bio-oil quality during the hydrodeoxygenative upgrading process. Fuel 153: 535-543. https://doi.org/10.1016/j.fuel.2015.03.030
- Ragauskas, A.J., Williams, C.K., Davison, B.H., George, B., John, C., Eckert, C.A., Frederick Jr., W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T. 2006. The Path Forward for Biofuels and Biomaterials. Science 311(5760): 484-489. https://doi.org/10.1126/science.1114736
- Ramiah, M.V. 1970. Thermogravimetric and Differential Thermal Analysis of Cellulose, Hemicellulose, and Lignin. Journal of Applied Polymer Science 14(5): 1323-1337. https://doi.org/10.1002/app.1970.070140518
- Shao, J., Agblevor, F. 2015. New Rapid Method for the Determination of Total Acid Number (Tan) of Bio-Oils. American Journal of Biomass and Bioenergy 4(1): 1-9.
- Shinano, T., Funaoka, M., Shirai, Y., Hassan, M.A. 2010. Potential of Oil Palm Lignocellulose for Producing Industrial Raw Materials. Transactions of the Materials Research Society of Japan 35(4): 937-940. https://doi.org/10.14723/tmrsj.35.937
- Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural and Food Chemistry 58(16): 9043-9053. https://doi.org/10.1021/jf1008023
- Wise, L.E., Murphy, M., d'Addieco, A.A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122(2): 35-43.
- Yusoff, S. 2006. Renewable energy from palm oil innovation on effective utilization of waste. Journal of Cleaner Production 14(1): 87-93. https://doi.org/10.1016/j.jclepro.2004.07.005
Cited by
- Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products vol.44, pp.5, 2016, https://doi.org/10.5658/WOOD.2016.44.5.629