Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.
The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.
Ginseng, one of the important economic crops, is processed into medicine, teas, beverages and even foods. Drying is the most important and burdensome work in the processing of ginseng, so development of ginseng dryer is needed for efficient drying and good quality of ginseng. Investigation of drying model is essential for development of ginseng dryer. Drying models for peeled ginseng were investigated to determine dominant drying factors and fitted with five selected drying models and an empirical model. Thompson and the empirical model showed best fit with the experimental data. Pother experiment is necessary to prove the superiority of the empirical models.
The prediction of spall response of reinforced concrete members like columns and slabs have been attempted by earlier researchers with analytical solutions, as well as with empirical models developed from data generated from physical or numerical experiments, with different degrees of success. In this article, compared to the empirical models, more versatile and accurate models are developed based on model-free approach of artificial neural network (ANN). Synthetic data extracted from the results of numerical experiments from literature have been utilized for the purpose of training and testing of the ANN models. For two concrete members, namely, slabs and columns, different sets of ANN models were developed, each of which proved to have definite advantages over the corresponding empirical model reported in literature. In case of slabs, for all three categories of spall, the ANN model results were superior to the empirical models as evaluated by the various performance metrics, such as correlation, root mean square error, mean absolute error, maximum overestimation and maximum underestimation. The ANN models for each category of column spall could handle three variables together: namely, depth, spacing of longitudinal and transverse reinforcement, as contrasted to the empirical models that handled one variable at a time, and at the same time yielded comparable performance. The application of the ANN models for spall prediction of concrete slabs and columns developed in this study has been discussed along with their limitations.
This study was conducted to investigate the adequacy of the representative empirical models which are developed for predicting the tractive performance of the tractor operating in various soil conditions. Four representative empirical models which are widely used in the traction prediction of tractor were selected through literature review. Four models were Wismer-Luth, Brixius, Dwyer and Hernandez model, which were empirical traction models of a single wheel. The efficacy of four models were confirmed via comparison of the tractions of tractor predicted using the four models with those measured from traction tests which were conducted for two different driving type (2WD and 4WD) of the tractor on two different soil conditions. The results showed that tractions predicted by Brixius' model, especially for slip range under 20% which the operating efficiency of a tractor is very high, were well consistent with the ones measured from traction test better than the tractions predicted by models which are proposed by Wismer-Luth, Dwyer and Hernandez.
We present the Yonsei evolutionary population synthesis (YEPS) models based on the high-resolution empirical spectral energy distributions (SEDs). We have adopted the MILES library in the optical wavelength, and our new models based on the MILES library show good agreements with our previous models presented in the YEPS I. The effect of hot horizontal-branch (HB) stars on the integrated properties of simple stellar populations (SSPs) is again confirmed by our models based on empirical SEDs. In addition, we have extended our empirical models to the near-IR wavelength and predicted the strengths of the calcium II triplet (CaT) and the Paschen triplet (PaT) based on the INDO-US and the Cenarro library. We find that the effect of HB stars and the age of SSPs on the CaT is almost negligible. On the other hands, the PaT models are very sensitive to the existence of hot stars, e.g., HB stars and young turn-off stars, and show very similar results with Balmer lines. Interestingly, the CaT distribution of GCs in NGC 1407, which is at odds with the optical (B-I) color distribution, can be explained by the unique feature of the CaT-[Fe/H] relations that show almost the same equivalent widths in the metal-rich regime. We will also discuss the impact of the second-generation populations on the strength of the CaT.
In order to introduce to engineers the suitable calculation techniques of TBM advance rate (ad.) and ultimately promote to understand the designing process, this study was carried out. We analyzed the 17 bored data of TBM which applied to the roadway and water supply tunnels in Korea. From this analysis, it was able to how that the average utilization is 30.83% md the correlation equation of Ad and TBM´s diameter (D) is Ad(m/month) = 506.05ㆍ $e^{-0.1162}$$\times$D than the correlation coefficient ($R^2$) is 0.76. In the object of the W tunnel of Seoul-Busan highspeed railway, the Ad of TBM 5.0mø was analyzed by the variety of empirical models and upper correlation equation. Average Ad of the empirical models was calculated to be larger than one of the upper equations. But considering only the results of 3.0~5.0mø TBM in the 17 bored data, the average Ad by the models belongs to the similar range of bored data. Therefore, when the reliability and representative of parameters are decreased, a reliability test should be carried out through the comparison a variety of empirical models with the upper correlation equation.
The Bidirectional Reflectance Distribution (BRD) effect is critical to interpret the surface information using remotely sensed data. This effect was caused by geometric relationship between sensor, target and solar that is inevitable effect for data of optical sensor. To remove the BRD effect, semi-empirical BRDF models are widely used. It is faster to calculate than physical models and demanded less observation than empirical models. In this study, Ross-Li kernel and Roujean kernel were used respectively in National Aeronautics and Space Administration (NASA) and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) that are used to compare each other. The semi-empirical model consists of three parts which are isotropic, geometric and volumetric scattering. Each part contained physical kernel and empirical coefficients that were calculated by statistical method. Red and NIR channel of SPOT/VEGETATION product were used to compute Nadir BRDF Adjusted Reflectance (NBAR) over East Asia area from January 2009 to December 2009. S1 product was provided by VITO that was conducted atmospheric correction using Simplified Method of Atmospheric Correction (SMAC). NBAR was calculated using corrected reflectance of red and NIR. Previous study has revealed that Roujean geometric kernel had unphysical values in large zenith angles. We extracted empirical coefficients in three parts and normalized reflectance to compare both BRDF models. Two points located forest in Korea peninsular and bare land in Gobi desert were selected for comparison. As results of time series analysis, both models showed similar reflectance change pattern and reasonable values. Whereas in case of empirical coefficients comparison, different changes pattern of values were showed in isotropic coefficients.
Credibility theory has provided with a useful tool the assignment of weighting factor that reflects the credibility of the observed individual and collective experience to secure fair experience rate-,making. We review credibility models which can effectively estimate risk premiums using credibility theory, and suggest an empirical Bayed model based on the collective statistics to estimate the structural parameters. To illustrate the use of evolutionary models, the models are applied to the actual data, such as loss ratio, claim frequencies and severity, in the Korean automobile insurance. Also the possibilities of generalizations and applications of empirical models are discussed.
Soil respiration ($R_S$) is a critical component of the annual carbon balance of forests, but few studies thus far have attempted to evaluate empirical regression models in $R_S$. The principal objectives of this study were to evaluate the relationship between $R_S$ rates and soil temperature (ST) and soil water content (SWC) in soil from a cool-temperate deciduous broad-leaved forest, and to evaluate empirical regression models for the prediction of $R_S$ using ST and SWC. We have been measuring $R_S$, using an open-flow gas-exchange system with an infrared gas analyzer during the snowfree season from 1999 to 2001 at the Takayama Forest, Japan. To evaluate the empirical regression models used for the prediction of $R_S$, we compared a simple exponential regression (flux = $ae^{bt}$Eq. [1]) and two polynomial multiple-regression models (flux = $ae^{bt}{\times}({\theta}{\nu}-c){\times}(d-{\theta}{\nu})^f:$ Eq. [2] and flux = $ae^{bt}{\times}(1-(1-({\theta}{\nu}/c))^2)$: Eq. [3]) that included two variables (ST: t and SWC: ${\theta}{\nu}$) and that utilized hourly data for $R_S$. In general, daily mean $R_S$ rates were positively well-correlated with ST, but no significant correlations were observed with any significant frequency between the ST and $R_S$ rates on periods of a day based on the hourly $R_S$ data. Eq. (2) has many more site-specific parameters than Eq. (3) and resulted in some significant underestimation. The empirical regression, Eq. (3) was best explained by temporal variations, as it provided a more unbiased fit to the data compared to Eq. (2). The Eq. (3) (ST $\times$ SWC function) also increased the predictive ability as compared to Eq. (1) (only ST exponential function), increasing the $R^2$ from 0.71 to 0.78.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.