• Title/Summary/Keyword: emotion sensing

Search Result 49, Processing Time 0.027 seconds

Development for Multi-modal Realistic Experience I/O Interaction System (멀티모달 실감 경험 I/O 인터랙션 시스템 개발)

  • Park, Jae-Un;Whang, Min-Cheol;Lee, Jung-Nyun;Heo, Hwan;Jeong, Yong-Mu
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.627-636
    • /
    • 2011
  • The purpose of this study is to develop the multi-modal interaction system. This system provides realistic and an immersive experience through multi-modal interaction. The system recognizes user behavior, intention, and attention, which overcomes the limitations of uni-modal interaction. The multi-modal interaction system is based upon gesture interaction methods, intuitive gesture interaction and attention evaluation technology. The gesture interaction methods were based on the sensors that were selected to analyze the accuracy of the 3-D gesture recognition technology using meta-analysis. The elements of intuitive gesture interaction were reflected through the results of experiments. The attention evaluation technology was developed by the physiological signal analysis. This system is divided into 3 modules; a motion cognitive system, an eye gaze detecting system, and a bio-reaction sensing system. The first module is the motion cognitive system which uses the accelerator sensor and flexible sensors to recognize hand and finger movements of the user. The second module is an eye gaze detecting system that detects pupil movements and reactions. The final module consists of a bio-reaction sensing system or attention evaluating system which tracks cardiovascular and skin temperature reactions. This study will be used for the development of realistic digital entertainment technology.

  • PDF

Research on Planning and Design of Smart Fitness Wear for Personal Training Improvement (퍼스널 트레이닝 효과 향상을 위한 스마트 피트니스웨어의 상품기획 및 디자인 방향 연구)

  • Jung, Chanwoong;Kwak, Yonghoo;Park, Seoyeon;Lee, Joohyeon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.97-108
    • /
    • 2017
  • The purpose of this study was to propose a product planning and design direction for smart fitness wear that will improve the impact of personal training based on researching the requirements of smart fitness wear and its acceptance level, as well as the functional demand. The study conducted in-depth interviews with professional fitness trainers and derived five categories and thirteen keywords by analyzing the categorical data analysis using the interview data. In addition, we surveyed general consumers to measure the acceptance level of smart fitness wear and the functional demand for product development. The results revealed that the difference in the acceptance level of smart fitness wear generally depended on the characteristics related to exercise involvement and exercise-related culture rather than on the demographic characteristics. With regard to the difference in the functional demand of smart fitness wear, the results showed that professional trainers focused on the scientific improvement of the effect of exercise while general consumers focused on the function that considers the sustainability of exercise. Based on the results, we proposed product planning and design directions such as 'mounting of heart rate sensing, muscle activity sensing, motion angle or posture sensing, and motion sensing', 'development of concepts and contents for expert line, ordinary line', 'compression wear design', and 'differentiation of product development according to exercise areas'.

Evaluating Joint Motion Sensing Efficiency According to the Implementation Method of CNT-Based Fabric Sensors (CNT 기반의 직물센서 구현 방법에 따른 관절동작 센싱 효율 평가)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.129-138
    • /
    • 2021
  • This study aimed to determine the effects of the shape and attachment position of stretchable textile sensors coated with carbon nanotube on their performance when used to measure children's joint movements. Moreover, the child-safe requirements for fabric motion sensors are established. The child participants were advised to wear integrated clothing equipped with the sensors of various shapes (rectangular and boat-shaped) and attachment positions (at the knee and elbow joints or 4 cm below the joints). The voltage change induced by the elongation and contraction of the fabric sensors was determined for arm and leg flexion-extension motions at 60 deg/s (three measurements of 10 repeats each for 60°and 90°angles, for a total of 60 repetitions). Their dependability was determined by comparing the fabric motion sensors to the associated acceleration sensors. The experimental results indicate that the rectangular-shaped sensor affixed 4 cm below the joint is the most effective fabric motion sensor for measuring children's arm and leg motions. In this study, we designed a textile sensor capable of tracking children's joint motion and analyzed the sensor shape and attachment position on motion sensing clothing. We demonstrated that flexible fabric sensors integrated into garments may be used to detect the joint motions of the human body.

Design of Illuminating Car Seats based on Woven Fabric of Optical Fiber

  • Song, HaYoung;Cho, Hakyung
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • In recent days, according as ergonomics and aesthetic engineering are important factors in the product market, there is a demand to develop automobile seat and interior designs which are focused on sensitive elements such as aesthetic and comfort features in order to satisfy the sensitive needs of consumers. To meet such demands, car seats are turning into functional and sensitive products that reflect elements of function and entertainment. According to such trends, this research is aimed to develop the illuminating car seat fabric that serve such functions as recognizing and reacting to car environments, which includes sensing over-speed, open doors, and unfastened safety belts through the illuminating car seat fabrics by optical fiber. For this purpose, basic physical properties of optical fiber are analyzed, appropriate weaving and etching technologies are applied, and the woven fabric of optical fiber for car seats are illuminating depend upon car environments. Moreover, the applicable woven fabric of optical fiber is deduced after evaluating the physical properties (such as tensile strength, heatproof, anti-fouling, washable and combustible traits) for the appropriateness of applying the woven fabric of optical fiber to car seats. For this purpose, the woven fabric of optical fiber is covered according to car seat processes; the optical fiber applied to seats is composed that it may be connected to one end of the connector linked to a LED so that it may perform functions like sensing over-speed, open doors, and unfastened safety belts; the sensed signals are transmitted to the control part, and luminescent signals are transmitted to LED.

A Study on the Design of Smart Clothing for Vital sign Monitoring -Based on ECG Sensing Clothing- (생체신호 모니터링 스마트 의류의 디자인 연구 -심전도 센싱 의류를 중심으로-)

  • Jo, Ha-Gyeong;Jo, Hyeon-Seung;Gu, Su-Min;Song, Ha-Yeong;Gang, Da-Hye;Lee, Ju-Hyeon;Lee, Jeong-Hwan;Lee, Yeong-Jae
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.123-126
    • /
    • 2009
  • 최근 생체 신호 센싱 기능의 의류가 연구 개발되어 왔으나, 생체 신호 측정 시 착용자의 동작에 의한 치명적인 잡음이 발생하는 문제가 지속적으로 보고되어 왔다. 이에 본 연구는 심전도 센싱 의류를 기반으로 생체 신호 측정의 정확성을 향상시키기 위하여 착용자의 동작에 의한 영향을 최소화할 수 있는 심전도 센싱 스마트 의류의 모형을 개발하고자 하였다. '일자형 절개 타입', '십자형 절개 타입', '엑스형 절개 타입', '곡선 엑스형 절개 타입'의 총 네 가지 타입의 생체신호 센싱 스마트 의류의 시안을 설계하고 제작하였다. 디자인 시안은 민소매 형태의 남성용 티셔츠로 신축성 있는 소재를 사용하여 인체 굴곡을 따라 의복과 전극이 밀착될 수 있도록 하였으며, 트랜스미터를 이용하여 메인 컴퓨터로 데이터가 무선 전송되게 하였다. 본 연구에서는 개발된 4 가지 의류 타임을 기반으로 인체의 정지 및 동작 상태에서의 심전도 센싱 성능을 평가하기 위해 동작에 따른 전극의 변위를 측정하고, 심전도 측정 평가를 실시하여 SNR을 분석하였다. 본 실험 곁과를 반영하여 의류 디자인 시안의 수정 및 보완 과정을 거친 후, 최종적으로 동작 잡음을 최소화하는 생체신호 센싱 스마트 의류 디자인 모형을 제시하였다.

  • PDF

A Study on the Application of AI and Linkage System for Safety in the Autonomous Driving (자율주행시 안전을 위한 AI와 연계 시스템 적용연구)

  • Seo, Dae-Sung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.95-100
    • /
    • 2019
  • In this paper, autonomous vehicles of service with existing vehicle accident for the prevention of the vehicle communication technology, self-driving techniques, brakes automatic control technology, artificial intelligence technologies such as well and developed the vehicle accident this occur to death or has been techniques, can prepare various safety cases intended to minimize the injury. In this paper, it is a study to secure safety in autonomous vehicles. This is determined according to spatial factors such as chip signals for general low-power short-range wireless communication and micro road AI. On the other hand, in this paper, the safety of boarding is improved by checking the signal from the electronic chip, up to "recognition of the emotion from residence time in the sensing area" to the biological electronic chip. As a result of demonstrating the reliability of the world countries the world, inducing safety autonomous system of all passengers in terms of safety. Unmanned autonomous vehicle riding and commercialization will lead to AI systems and biochips (Verification), linked IoT on the road in the near future, and the safety technology reliability of the world will be highlighted.

A Structural Analysis between Comfort Feeling and Sensing in Indoor Environment Using Fuzzy Inference (퍼지추론을 이용한 실내환경 쾌적감성과 감각과의 구조 분석)

  • Kim, Jin;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • There are various kinds of good feelings in indoor environment such as comfort, pleasure, delight, refreshment, geniality, etc. Each feeling is interrelated with other complex elements of senses such as warmth, coldness, calmness, clearness, brightness, etc. In this paper, we described what is good feeling in indoor environment, and developed elements of good feelings using Emotion & Sensibility engineering approach. Resultant elements of good feelings were "comfort," "refreshment," and "freshness." Secondary, we investigated the relationships of these elements with certain elements of senses. "Comfort" is related with "warmth, calmness, brightness, and very clearness in indoor air." "Refreshment" and "freshness" are related with "coldness, moderately calmness, very brightness, and very clearness in indoor air." The relationships were formulated as a fuzzy model. By applying human intuition to this model, we could determine physical ranges of "comfort, refreshment, and freshness."

  • PDF

Emotional Model Focused on Robot's Familiarity to Human

  • Choi, Tae-Yong;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1025-1030
    • /
    • 2005
  • This paper deals with the emotional model of the software-robot. The software-robot requires several capabilities such as sensing, perceiving, acting, communicating, and surviving. and so on. There are already many studies about the emotional model like KISMET and AIBO. The new emotional model using the modified friendship scheme is proposed in this paper. Quite often, the available emotional models have time invariant human respond architectures. Conventional emotional models make the sociable robot get around with humans, and obey human commands during robot operation. This behavior makes the robot very different from real pets. Similar to real pets, the proposed emotional model with the modified friendship capability has time varying property depending on interaction between human and robot.

  • PDF

Physiological signal sensing on meridian for emotion recognition (감정분석을 위한 경락에서의 생체 신호 추출)

  • Choi, Ah-Young;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.517-519
    • /
    • 2005
  • 본 논문에서는 한의학의 관점에서 몸과 마음의 상호작용에 대한 이론에 기반하여 사용자의 주의를 파악하기 위해 필요한 생체 신호의 센싱방법을 제안한다. 생체 신호는 음양오행의 각 부분의 반응을 살필 수 있는 체표의 자극 반응점인 경혈점에서 GSR을 이용하여 측정한다. 제안된 방법은 기존의 서양의학에 기반한 생체 신호 특징 분석을 다른 관점에서 해석할 수 있는 틀을 마련한다. 추출된 생체신호는 감정, 의도 분석에 활용될 수 있으며 추후 유비쿼터스 컴퓨팅 환경에서 인간과 컴퓨터간의 원활한 상호작용을 위한 개인화된 인터페이스 제공에 사용될 수 있다.

  • PDF

Walking Intention Detection using Fusion of FSR and Tilt Sensor Signals (저항 센서와 기울기 센서의 융합에 의한 보행 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Lee, Jae-Yeon;Chi, Su-Young;Kang, Sang-Seung;Cho, Young-Jo
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.441-448
    • /
    • 2010
  • In the aging society, the walking assist robot is a necessary device for being able to help the older and the lower limb disabled people to walk. In order to produce a convenient robot for the older and the lower limb disabled, it is needed for the research to detect the implicit walking intention and to control robot by a user's intention. This study is a previous study to develop the detection model of the walking intention and analyze the user's walking intention while a person is walking with Lofstrand crutches, by the combination of FSR and tilt signals. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We can recognize the user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

  • PDF