• 제목/요약/키워드: emotion engineering

검색결과 793건 처리시간 0.019초

대용량 소셜 미디어 감성분석을 위한 반감독 학습 기법 (Semi-supervised learning for sentiment analysis in mass social media)

  • 홍소라;정연오;이지형
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.482-488
    • /
    • 2014
  • 대표적인 소셜 네트워크 서비스(SNS)인 트위터의 내용을 분석하여 자동으로 트윗에 나타난 사용자의 감성을 분석하고자 한다. 기계학습 기법을 사용해서 감성 분석 모델을 생성하기 위해서는 각각의 트윗에 긍정 또는 부정을 나타내는 감성 레이블이 필요하다. 그러나 사람이 모든 트윗에 감성 레이블을 붙이는 것은 비용이 많이 소요되고, 실질적으로 불가능하다. 그래서 본 연구에서는 "감성 레이블이 있는 데이터"와 함께 "감성 레이블이 없는 데이터"도 활용하기 위해서 반감독 학습기법인 self-training 알고리즘을 적용하여 감성분석 모델을 생성한다. Self-training 알고리즘은 "레이블이 있는 데이터"의 레이블이 있는 데이터를 활용하여 "레이블이 없는 데이터"의 레이블을 확정하여 "레이블이 있는 데이터"를 확장하는 방식으로, 분류모델을 점진적으로 개선시키는 방식이다. 그러나 데이터의 레이블이 한번 확정되면 향후 학습에서 계속 사용되므로, 초기의 오류가 계속적으로 학습에 영향을 미치게 된다. 그러므로 조금 더 신중하게 "레이블이 없는 데이터"의 레이블을 결정할 필요가 있다. 본 논문에서는 self-training 알고리즘을 이용하여 보다 높은 정확도의 감성 분석 모델을 생성하기 위하여, self-training 중 "감성 레이블이 없는 데이터"의 레이블을 결정하여 "감성 레이블이 있는 데이터"로 확장하기 위한 3가지 정책을 제시하고, 각각의 성능을 비교 분석한다. 첫 번째 정책은 임계치를 고려하는 것이다. 분류 경계로부터 일정거리 이상 떨어져 있는 데이터를 선택하고자 하는 것이다. 두 번째 정책은 같은 개수의 긍/부정 데이터를 추가하는 것이다. 한쪽 감성에 해당하는 데이터에만 국한된 학습을 하는 것을 방지하기 위한 것이다. 세 번째 정책은 최대 개수를 고려하는 것이다. 한 번에 많은 양의 데이터가 "감성 레이블이 있는 데이터"에 추가되는 것을 방지하고 상위 몇%만 선택하기 위해서, 선택되는 데이터의 개수의 상한선을 정한 것이다. 실험은 긍정과 부정으로 분류되어 있는 트위터 데이터 셋인 Stanford data set에 적용하여 실험하였다. 그 결과 학습된 모델은 "감성 레이블이 있는 데이터" 만을 가지고 모델을 생성한 것보다 감성분석의 성능을 향상 시킬 수 있었고 3가지 정책을 적용한 방법의 효과를 입증하였다.

일 도시의 초등학교 학생의 수면습관과 행동, 정서, 주의력, 학습과의 관계 (Differences in Sleep Patterns are Related to Behavior, Emotional Problems, Attention and Academic Performance in Elementary School Students of a South Korean Metropolitan City)

  • 탁희종;이지호;이장명;정석훈;이재원;심창선;윤재국;성주현;방수영
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제22권3호
    • /
    • pp.182-191
    • /
    • 2011
  • Objectives: The aim of this study was to investigate the sleep patterns of South Korean elementary school children and whether the differences in sleep patterns were related to behavior, emotional problems, attention and academic performance. Method: This study included a community sample of 268 boys and girls from fourth-, fifth- and sixth-grade classes in a South Korean metropolitan city from November to December 2010. The primary caregivers completed a questionnaire that included information on demographic characteristics, as well as the Child's Sleep Habit Questionnaire (CSHQ), the Korean version of Child Behavior Checklist (K-CBCL), the Korean version of the Learning Disability Evaluation Scale (K-LDES), the Korean version of ADHD Rating Scale (K-ARS) and the Disruptive Behavior Disorder Scale (DBDS). We conducted analyses on the CSHQ individual items, between the subscales, on the total scores and on the K-CBCL, the K-LEDS, the K-ARS and the DBDS. Results: Based on the findings from the CHSQ, the subjects had significantly higher scores for bedtime resistance ($9.18{\pm}2.17$), delayed sleep onset ($1.32{\pm}0.62$), the sleep duration ($4.19{\pm}1.52$) and daytime sleepiness ($14.10{\pm}3.55$) than the scores from the previous reports on children from western countries. The total CHSQ score showed positive correlations to all subscales of the K-CBCL : withdrawn (r=0.24, p<.005), somatic complaint (r=0.24, p<.005) and anxious/depressive (r=0.38, p<.005). Bedtime resistance was associated with oppositional defiant disorder (r=0.15, p<.05) and a positive correlation was demonstrated between sleep anxiety and the oppositional defiant disorder score (r=0.13, p<.05), night waking and the conduct disorder score (r=0.16, p<.05). Delayed sleep onset was related with low performance on the K-LDES with respect to thinking (r=-0.17, p<.05) and mathematical calculation (r=-0.17, p<.05). Conclusion: The results of this study reconfirm Korean children's problematic sleep patterns. Taken together the results provide that the reduced sleep duration and disruption of sleep pattern can have a significant impact on emotion, behavior, performance of learning in children. Further studies concerning more diverse psychosocial factors affecting sleep pattern will be helpful to understanding of the sleep health in Korean children.

댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측 (Issue tracking and voting rate prediction for 19th Korean president election candidates)

  • 서대호;김지호;김창기
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.199-219
    • /
    • 2018
  • 인터넷의 일상화와 각종 스마트 기기의 보급으로 이용자들로 하여금 실시간 의사소통이 가능하게 하여 기존의 커뮤니케이션 양식이 새롭게 변화되었다. 인터넷을 통한 정보주체의 변화로 인해 데이터는 더욱 방대해져서 빅데이터라 불리는 정보의 초대형화를 야기하였다. 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회로 여겨지고 있다. 특히 텍스트 마이닝은 비정형 텍스트 데이터를 이용해 패턴을 탐구하여 의미있는 정보를 찾아낸다. 텍스트 데이터는 신문, 도서, 웹, SNS 등 다양한 곳에 존재하기 때문에 데이터의 양이 매우 다양하고 방대하여 사회적 실제를 이해하기 위한 데이터로 적합하다. 본 연구는 한국 최대 인터넷 포털사이트 뉴스의 댓글을 수집하여 2017년 19대 한국 대선을 대상으로 연구를 수행하였다. 대선 선거일 직전 여론조사 공표 금지기간이 포함된 2017년 4월 29일부터 2017년 5월 7일까지 226,447건의 댓글을 수집하여 빈도분석, 연관감성어 분석, 토픽 감성 분석, 후보자 득표율 예측을 수행하였다. 이를 통해 각 후보자들에 대한 이슈를 분석 및 해석하고 득표율을 예측하였다. 분석 결과 뉴스 댓글이 대선 후보들에 대한 이슈를 추적하고 득표율을 예측하기에 효과적인 도구임을 보여주었다. 대선 후보자들은 사회적 여론을 객관적으로 판단하여 선거유세 전략에 반영할 수 있고 유권자들은 각 후보자들에 대한 이슈를 파악하여 투표시 참조할 수 있다. 또한 후보자들이 빅데이터 분석을 참조하여 선거캠페인을 벌인다면 국민들은 자신들이 원하는 바가 후보자들에게 피력, 반영된다는 것을 인지하고 웹상에서 더욱 적극적인 활동을 할 것이다. 이는 국민의 정치 참여 행위로써 사회적 의의가 있다.