• 제목/요약/키워드: emitting layer

검색결과 989건 처리시간 0.027초

유기 발광 소자에서 정공 주입 버퍼층의 효과 (Effects of Hole-Injection Buffer Layer in Organic Light-Emitting Diodes)

  • 정동희;김상걸;오현석;홍진웅;이준웅;김영식;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.816-825
    • /
    • 2003
  • Current-voltage-luminance characteristics of organic light-emitting diodes (OLEDs) were measured in the temperature range of 10 K~300 K. Indium-tin-oxide (ITO) was used as an anode and aluminum as a cathode in the device. Organic of N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) was used for a hole transporting material, and tris (8-hydroxyquinolinato) aluminum (Alq$_3$) for an electron transporting material and emissive material. And copper phthalocyanine (CuPc), poly(3,4-ethylenedi oxythiophene);poly(styrenesulfonate) (PEDOT:PSS), and poly(N-vinylcarbazole) (PVK) were used for hole-injection buffer layers. From tile analysis of electroluminescence (EL) and photoluminesccnce (PL) spectra of the Alq$_3$, the EL spectrum is more greenish then that of PL. And the temperature-dependent current-voltage characteristics were analyzed in the double and multilayer structure of OLEDS. Electrical conduction mechanism was explained in the region of high-electric and low-electric field. Temperature-dependent luminous efficiency and operating voltage were analyzed from the current-voltage- luminance characteristics of the OLEDS.

Synthesis of 5,6-Dihydro[1,10]phenanthroline Derivatives and Their Properties as Hole-Blocking Layer Materials for Phosphorescent Organic Light-Emitting Diodes

  • Lee, Hyo-Won;An, Jung-Gi;Yoon, Hee-Kyoon;Jang, Hyo-Sook;Kim, Nam-Gwang;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1569-1574
    • /
    • 2005
  • To develop new hole-blocking materials for phosphorescent organic light-emitting diodes (PhOLEDs), 5,6-dihydro-2,9-diisopropyl-4,7-diphenyl[1,10]phenanthroline (1) and 5,6-dihydro-2,9-diisopropyl-4-(4-methoxyphenyl)-7-phenyl[1,10]phenanthroline (2) were synthesized. While the absorption spectrum of 1 is very similar to that of 2, the photoluminescence spectrum of 1 has the feature of the narrower and blue-shifted blueviolet emission at the peak of 356 nm compared to that of 2. The HOMO and LUMO energy levels of 1 and 2 were estimated from the measurement of cyclic voltammetry, and 1 has the appropriate levels for a holeblocking layer (HBL). The use of 1 as a HBL in a green PhOLED led to good efficiency of 23.6 cd/A at 4.4 mA/$cm^2$.

Two-color-mixed white organic light-emitting diodes with a high color temperature

  • Park, Jung-Soo;Yu, Jae-Hyung;Jeon, Woo-Sik;Son, Young-Hoon;Kulshreshtha, Chandramouli;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • 제12권1호
    • /
    • pp.51-55
    • /
    • 2011
  • Efficient two-color-mixed white organic light-emitting diodes are presented herein by employing a sky-blue phosphorescent dopant of iridium(III)bis[4,6-(difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and an orange phosphorescent dopant of bis(2-phenylquinoline)(acetylacetonate)iridium(III) ($Ir(phq)_2$acac) on the emissive layer. Very stable color variation under ${\Delta}$0.02 until a 5000 cd/$m^2$ brightness value was realized by efficient carrier control in a multi-stacked emitting layer of blue/red/blue colors. Maximum current and power efficiencies of 23.8 cd/A and 22.9 lm/W in the forward direction were obtained. With balanced emission from the two emitters, the white-light emission of high correlated color temperature of 7308K and the Commission Internationale de I'Eclairage coordinates of (0.30, 0.33) were achieved.

Zn-Complexes를 이용한 OLEDs의 발광 특성 연구 (Luminance Properties of Organic Light Emitting Diodes Using Zn-Complexes)

  • 장윤기;김두석;김병상;권오관;이범종;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1890-1892
    • /
    • 2005
  • Recently, high luminance and high efficiency were realized in OLEDs with multilayer structure including emitting materials such as metal-chelate complexes. New luminescent materials, [2- (2-hydroxyphenyl)-quinoline] (Zn(HPB)q), [(1,10-phenanthroline)- (8-hydroxyquinoline)] Zn(Phen)q was synthesized. Zn-Complexes have low molecular compound and thermal stability. The ionization potential(IP) and electron affinity(EA) of Zn-complexes were measured by cyclic-voltammetry(CV). The fundamental structure of the OLEDs was $ITO/{\alpha}$-NPD/Zn-Complex/Al and then we made device structure rightly in energy band gap. We using Zn(Phen)q as emitting layer and Zn(HPB)q as electron transport layer. We measured current density-voltage, luminance-voltage characteristics.

  • PDF

변조 광전류 측정법을 이용하여 유기 발광 소자에서 $Li_2O$ 두께 변화에 따른 내장 전압 (Built-in voltage depending on $Li_2O$ layer thickness in organic light-emitting diodes from the measurement of modulated photocurrent)

  • 이은혜;윤희명;김태완;민항기;장경욱;정동회;오용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.31-32
    • /
    • 2007
  • Built-in voltage in organic light-emitting diodes was studied using modulated photocurrent technique ambient conditions. A device was made with a structure of anode/$Alq_3$/cathode to study a built-in voltage. An ITO was used as an anode, and $Li_2O$/Al was used as a cathode. From the bias voltage-dependent photocurrent, built-in voltage of the device is determined. The applied bias voltage when the magnitude of modulated photocurrent is zero corresponds to a built-in voltage. Built-in voltage in the device is generated due to a difference of work function of the anode and cathode. It was found that for 0.5nm thick $Li_2O$ layer built-in voltage is the higher than the others. It indicates that a very thin alkaline metal compound $Li_2O$ lowers an electron barrier height.

  • PDF

촉매반응 화학기상증착법을 이용한 유기발광소자의 박막 봉지 (Thin Film Passivation of Organic Light Emitting Diodes by Catalyzer Enhanced Chemical Vapor Deposition (CECVD))

  • 김한기;문종민;배정혁;정순욱;김명수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.71-72
    • /
    • 2006
  • We report on plasma damage free chemical vapor deposition technique for the thin film passivation of organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays using catalyzer enhanced chemical vapor deposition (CECVD). Specially designed CECVD system has a ladder-shaped tungsten catalyzer and movable electrostatic chuck for low temperature deposition process. The top emitting OLED with thin film $SiN_x$ passivation layer shows electrical and optical characteristics comparable to those of the OLED with glass encapsulation. This indicates that the CECVD technique is a promising candidate to grow high-quality thin film passivation layer on OLED, OTFT, and flexible displays.

  • PDF

Low Temperature Annealing Effect of PFO-Poss Emission Layer on the Properties of Polymer Light Emitting Diodes

  • Gong, Su-Cheol;Chang, Ho-Jung
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.313-318
    • /
    • 2009
  • Polymer Light Emitting Diodes (PLEDs) with an ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al structure were prepared on plasma-treated ITO/glass substrates using spin-coating and thermal evaporation methods. The annealing effects of the PFO-poss film when it acts as the emission layer were investigated by using electrical and optical property measurements. The annealing conditions of the PFO-poss emission film were 100 and $200^{\circ}C$ for 1, 2 and 3 hours, respectively. The luminance increased and the turn-on voltage decreased when the annealing temperature and treatment time increased. After examining the Luminance-Voltage (L-V) properties of the PLED, the maximum luminance was found to be 1497 cd/$m^2$ at 11 V for the device when it was annealed at $200^{\circ}C$ for 3 hours. The peak intensity of the PLED emission spectra at approximately 525 nm in wavelength increased when the annealing temperature and time of the PFO-poss film increased. These results suggest that the light emission color shifted from blue to green.

Reducing Efficiency Droop in (In,Ga)N/GaN Light-emitting Diodes by Improving Current Spreading with Electron-blocking Layers of the Same Size as the n-pad

  • Pham, Quoc-Hung;Chen, Jyh-Chen;Nguyen, Huy-Bich
    • Current Optics and Photonics
    • /
    • 제4권4호
    • /
    • pp.380-390
    • /
    • 2020
  • In this study, the traditional electron-blocking layer (EBL) in (In,Ga)N/GaN light-emitting diodes is replaced by a circular EBL that is the same size as the n-pad. The three-dimensional (3D) nonlinear Poisson, drift-diffusion, and continuity equations are adopted to simulate current transport in the LED and its characteristics. The results indicate that the local carrier-density distribution obtained for the circular EBL design is more uniform than that for the traditional EBL design. This improves the uniformity of local radiative recombination and local internal quantum efficiency (IQE) at high injection levels, which leads to a higher lumped IQE and lower efficiency droop. With the circular EBL, the lumped IQE is higher in the outer active region and lower in the active region under the n-pad. Since most emissions from the active region under the n-pad are absorbed by the n-pad, obviously, an LED with a circular EBL will have a higher external quantum efficiency (EQE). The results also show that this LED works at lower applied voltages.

음전극 변화에 따른 전면 유기 발광 소자의 광학적 특성 (Optical properties of top-emission organic light-emitting diodes due to a change of cathode electrode)

  • 주현우;안희철;나수환;김태완;장경욱;오현석;오용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.345-346
    • /
    • 2008
  • We have studied an emission spectra of top-emssion organic light-emitting diodes(TEOLED) due to a change of cathode and organic layer thickness. Device structure is Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/cathode. And two different types of cathode were used; one is LiF(0.5nm)/Al(25nm) and the other is LiF(0.5nm)/Al(2nm)/Ag(30nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layer was kept to be about 2:3. Al and Al/Ag double layer cathode devices show that the emission spectra were changed from 490nm to 560nm and from 490nm to 560nm, respectively, when the total organic layer increase. Full width at half maximum was changed from 67nm to 49nm and from 90nm to 35nm as the organic layer thickness increases. All devices show that view angle dependent emission spectra show a blue shift. Blue shift is strong when the organic layer thickness is more than 140nm. Devece with Al/Ag double layer cathode is more vivid.

  • PDF

플렉시블 OLED 소자 제작을 위한 접합층 특성 연구 (Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes)

  • 문철희
    • 접착 및 계면
    • /
    • 제24권3호
    • /
    • pp.86-94
    • /
    • 2023
  • OLED 소자를 용액공정으로 제작함에 있어 음극 전극의 용액공정화가 기술적인 난제이므로 별도의 기판에 음극 전극을 형성하고 PEI 층을 접합층으로 사용하여 이를 다른 기판의 소자와 물리적, 전기적으로 연결하는 연구를 진행하였다. PEI 용액의 농도, PEI 층의 두께 및 첨가제 혼합 등을 변수로 하였으며 접착력 측정기와 EOD 소자 제작을 통하여 특성을 확인한 결과는 다음과 같다. PEI 용액의 농도가 높을수록 접착강도가 증가하였으나 막 두께의 증가로 전류 밀도가 감소하였다. 0.1 wt% PEI 용액에 첨가제로서 조비톨과 PEG를 혼합한 결과 PEG를 0.5 wt%의 농도로 혼합한 조건에서 900 mA/cm2 의 최대 전류 밀도를 얻었으며 양호한 접착 상태와 소자의 점등도 확인되었다.