• Title/Summary/Keyword: emitting layer

Search Result 986, Processing Time 0.037 seconds

Characteristics of Organic Light-Emitting Diodes with the Variation of Hole-Transporting Layer (정공 수송층 변화에 따른 유기 발광 소자 특성)

  • Jeong, J.;Kim, G.S.;Byun, D.G.;Kim, G.Y.;Kim, T.W.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.134-136
    • /
    • 2003
  • In this work, we have seen the effect of hole-transporting layer in organic light-emitting diodes using N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine(TPD) and N,N'-biphenyl-N,N'-bis-(1-naphenyl)-[l,l'-biphenyl]-4,4'-diamine(NPB). NPB is regarded as a better hole trans porting material than TPD, since it has a higher glass transition temperature($T_g$). And current-voltage, luminance-voltage and external quantum efficiency of device were measured with the thickness variation of buffer layer using copper phathalocyanine(CuPc) am polytetrafluoroethylene (PTEE) at room temperature. We have obtained an improvement of External quantum efficiency when the CuPc 30[nm] and PTFE 1.0[nm] is used.

  • PDF

Enhanced efficiency of organic light-emitting diodes by doping the holetransport layer

  • Kwon, Do-Sung;Song, Jun-Ho;Lee, Hyun-Koo;Shin, You-Chul;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1401-1403
    • /
    • 2005
  • We present that the carrier balance can be improved by doping a hole transport layer of 4,4'- bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD) with a hole blocking material of 2,9-dimethyl- 4,7-diphenyl-1,10-phenanthroline (BCP). The doping leads to disturb hole transport, which can enhance the balance of electron s and holes concentration in the emitting layer, aluminum tris(8 -hydroxyquinoline) (Alq3), resulting in enhanced electroluminescence (EL) quantum efficiency for the device with the doped ${\alpha}$-NPD.

  • PDF

Characteristics of blue phosphorescent OLED with PVK host layer. (PVK Host를 이용한 청색인광 OLED의 특성)

  • Lee, Sun-Hee;Jo, Min-Ji;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • We have developed blue phosphorescent organic light emitting diode using spin-coated poly(9-vinylcarbazole) (PVK) host layer doped with blue phosphorescent material, Iridium(III) bis(4,6-difluorophenyl)-pyridinato-N,C2) picolinate (FIrpic). the concentration of FIrpic dopants was varied from 2% to 10%. The electrical and optical characteristics of the blue phosphorescent OLED with PVK:FIrpic layer were investigated.

  • PDF

Improvement of Light Extraction Efficiency of LED Packages Using an Enhanced Encapsulant Design

  • Choi, Hyun-Su;Park, Joon-Sik;Moon, Cheol-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.370-376
    • /
    • 2014
  • We optimized the design of the flat encapsulant of a light-emitting diode (LED) package to obtain higher light output power (LOP), both by experiment and simulation using three-dimensional ray-tracing software. In the experiment, the refractive index of the encapsulant was varied (1.41 and 1.53). In addition, double-layer structures with these refractive indices (1.41/1.53) were investigated by varying the shape of the interface between the two among flat, concave, and convex. The experiments showed that the LOP of the double-layer encapsulant with convex interface increased by 13.4% compared to the single-layer encapsulant with a refractive index 1.41, which was explained by the increase of the light extraction efficiency (LEE) in connection with the increase of the critical angle (${\theta}_c$) and the decrease of the Fresnel reflection.

Voltage-Current-luminance Characteristics of Organic : Light-Emitting Diodes depending on Hole-Injection Buffer Layer (유기 발광 소자에서 정공 주입 버퍼층에 의한 전압-전류-휘도 특성)

  • Jeong Joon;Kim Tag-Yong;Ko Keel-Young;Lee Deok-Jin;Hong Jin-Woong
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.49-54
    • /
    • 2003
  • In this work, we have seen the effect of hole-transporting layer in organic light-emitting diodes using N,N'-biphenyl-N,N'-bis-(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine(TPD) and N,N'-biphenyl-N,N'-bis-(1-naphenyl)-[1,1'-biphenyl]-4,4'-diamine(NPB). NPB is regarded as a better hole trans porting material than TPD, since it has a higher glass transition temperature$(T_g)$. And current -voltage, luminance-voltage and external quantum efficiency of device were measured with the thickness variation of buffer layer using copper phathalocyanine(CuPc) and polytetrafluoroethylene (PTFE) at room temperature. We have obtained an improvement of External quantum efficiency when the CuPc 30[nm] and PTFE 1.0[nm] is used.

  • PDF

Effects of indium tin oxide top electrode formation conditions on the characteristics of the top emission inverted organic light emitting diodes

  • Kho, Sam-Il;Cho, Dae-Yong;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.714-716
    • /
    • 2002
  • Indium tin oxide (ITO) was used as the top anode of top emission inverted organic light emitting diodes (TEIOLEDs). TEIOLEDs were fabricated by deposition of an aluminum bottom cathode, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1, 1'-diphenyl-4, 4 1'-diamine (TPD) hole transport layer, a tris-8-hydroxyquinoline aluminum ($Alq_3$) emission layer, and an ITO top anode sequentially. ITO was deposited by r.f. magnetron sputtering without $O_2$ flow during the deposition. After the deposition, the deposited ITO layer was kept under oxygen atmosphere for the oxidation. The characteristics of the TEOILED were affected significantly by the post-deposition oxidation condition.

  • PDF

Effect of plasma polythiophene as a buffer layer inserted on OLEDs (버퍼층으로서 플라즈마 polythiopheneol 유기EL소자에 미치는 영향)

  • Park, S.M.;Lee, B.J.;Kim, H.G.;Lim, K.B.;Kim, J.T.;Park, S.H.;Lim, E.C.;Lee, E.H.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.177-180
    • /
    • 2002
  • The purpose of this thesis is to develope buffer materials by the plasma polymerization method. In this article the buffer materials, plasma poly thiophene(PPTh) is used to study the interface of eter/organic in organic light emitting diodes(OLED). The interface of meter/organic materials is the important and critical objectives in development of OLED. The hole transport layer was N,N'-dipheneyl-N, N'bis-(3-methypheneyl)-1,1'dipheneyl-4,4'-diamine (TPD); the host material of mission layer was 8-tris-hydroxyquinoline aluminium (Alq3). When PPTh was inserted between ITO and TPD, emission efficiency increased.

  • PDF

High-performance InGaN/GaN-based Light-emitting Diodes Using Advanced Technical Approaches

  • Jang, Ja-Soon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.108-108
    • /
    • 2012
  • High-performance GaN-based light emitting diodes (LEDs) with high efficiency and excellent reliability have been of technological importance forapplications in full color display, automotive lighting, and solid state lighting. To realize high-performance and excellent-reliability LEDs, various technologies such as surface texturing, transparent conducting oxide, surface Plasmon, highly p-conduction layer, current blocking layer, photon-enhanced layer, and nanostructures have been extensively investigated. Among them, advanced core technologies based on how to suppress surface leakage and current crowding, how to enhance current injection efficiency and output power, and how to resist electrostatic damage will be displayed and discussed using our reported and preliminary results. New approaches like integrated LEDs will be also introduced and discussed.

  • PDF

Novel Small Molecular Materials For Solution Green Phosphorescent OLEDs

  • Lee, Ho-Jae;Yu, Eun-Sun;Jung, Sung-Hyun;Kim, Hyung-Sun;Kang, Eui-Su;Chae, Mi-Young;Chang, Tu-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.791-793
    • /
    • 2009
  • We have developed novel small molecular materials for solution phosphorescent OLEDs having multilayered device structures. These novel materials are applied as an interlayer which is between a buffer layer (or hole injection layer) and an emitting layer to improve the luminance efficiency of solution green phosphorescent OLEDs. In order to form stable double layers by spincoating process, we take the advantage of solubility differences of interlayer materials and emitting materials. Using CIM3 as an interlayer, we have attained the best luminance efficiency, 36 cd/A at a given constant of 2000cd/$m^2$ in the structure of ITO/PEDOT:PSS/CIM3/CIM6:Ir(mppy)$_3$/BAlq/Alq$_3$/LiF/Al.

  • PDF

Passivation of organic light emitting diodes with a-$SiN_x$ thin films grown by catalyzer enhanced chemical vapor deposition

  • Jeong, Jin-A;Kang, Jae-Wook;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.659-662
    • /
    • 2007
  • The characteristics of a $SiN_x$ passivation layer grown by a specially designed catalyzer enhanced chemical vapor deposition (CECVD) system and electrical and optical properties of OLEDs passivated with the $SiN_x$ layer are described. Despite the low substrate temperature, the single $SiN_x$ passivation layer, grown on the PC substrate, exhibited a low water vapor transmission rate of $2{\sim}6{\times}10^{-2}\;g/m^2/day$ and a high transmittance of 87 %. In addition, current-voltage-luminescence results of an OLED passivated with a 150 nm-thick $SiN_x$ film compared to nonpassivated sample were identical indicating that the performance of an OLED is not critically affected by radiation from tungsten catalyzer during the $SiN_x$ deposition.

  • PDF