• Title/Summary/Keyword: emission test

Search Result 1,624, Processing Time 0.033 seconds

투명 유연 AMOLED TV 구현을 위한 증착형 SnO2/Ag-Pd-Cu(APC)/SnO2 다층 투명 캐소드 박막 연구

  • Kim, Du-Hui;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.181.2-181.2
    • /
    • 2016
  • OLED 소자는 발광 방향에 따라 Bottom Emission 방식과 Top Emission 방식으로 나뉜다. 이 중 대면적 OLED TV 적용에 개구율이 더 높은 Top Emission방식을 선호하는 추세이다. 높은 개구율을 가진 Top Emission OLED소자를 위해서는 투명하고 전도성이 높은 캐소드가 중요하다. 본 연구에서는 Themal Evaporation 시스템을 이용하여 증착한 $SnO_2/Ag-Pd-Cu(APC)/SnO_2$ hybrid 전극의 특성을 연구하고 Oxide/Metal/Oxide(OMO) hybrid 박막의 bending mechanism을 제시하였다. base pressure는 $1{\times}10^{-6}Torr$로 고정하고 $SnO_2$ 박막은 0.34A / 0.32V, APC 박막은 0.46A / 0.40V의 power로 성막하였다. APC와 $SnO_2$의 두께를 변수로 OMO 전극을 제작하였고 그 전기적, 광학적 특성을 Hall measurement, UV/Visible spectroscopy을 이용하여 분석하고 Figure of merit 값을 바탕으로 최적 두께를 설정하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석으로 $SnO_2/APC/SnO_2$ 전극의 일함수을 통해 투명 cathode로 쓰였을 때 $SnO_2$ 층이 buffer layer역할을 함을 확인하였다. XPS(X-ray photoelectron spectroscopy)를 이용하여 정성분석과 정량분석을 하였고 OMO hybrid 전극의 bending mechanism 연구를 위해 다양한 bending test (Inner/Outer dynamic fatigue test, twisting test, rolling test)를 진행하였다. 물리적 힘이 가해진 OMO hybrid 전극의 표면과 구조는 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 확인할 수 있었다.

  • PDF

Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle (WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성)

  • Park, Junhong;Lee, Jongtae;Kim, Jeongsoo;Kim, Sunmoon;Ahn, Keunhwan
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

Investigation on the Exhaust Emission Characteristics of GDI Vehicles According to Various Mileage (다양한 주행거리를 가지는 직접분사방식 가솔린 자동차의 배출특성에 관한 연구)

  • Kim, Hyung Jun;Keel, Ji Hoon;Kang, Gun Woo;Kim, Sun Moon;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • Recently, manufacture and sales of passenger car with GDI (Gasoline Direct injection) were dramatically increased in Korea. In this study, investigation on the exhaust emission characteristics of GDI vehicles according to mileage were conducted by using chassis dynamometer and emission analyzer. Test cars selected 5 types with G4FD engine (1600 cc) and emissions of total 14 vehicles analyzed. Measurement and evaluation on emissions (CO, NOx, NMOG, $CO_2$) characteristics of GDI vehicles with mileages from 40,000 to 80,000 km in certification driving cycle (CVS-75) were carried out in this study. It is revealed that emission results of all test cars shows below emission standard, NMOG emission value of about 80,000 km doubled that of 40,000 km and emission increased by accumulated mileage. Also, increasing pattern of NOx emissions shows when the vehicle mileages was increased and $CO_2$ emission increasing trend obviously do not show according to mileages.

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

Estimation of Exhaust NOx Emission for Marine Engines (선박엔진의 NOx 배출량 산정)

  • 김대식;엄명도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.441-445
    • /
    • 2000
  • Considering international status of our country as world class ship builder and geographical characteristics encircled by sea in three facets, controlling of air pollutants emission from marine engines becomes more and more important issue in recent days. Implementation of immediate pollutants emission control regulation and standardization of test and certification procedure are required to reduce air pollution from marine engines. But cost increments due to additional equipment of emission control device and development and certification test expenses as well as depreciation of fuel economy should be considered. To satisfy those air pollution reduction and economic requirements, we should make our own interpretation of IMO standard and implementation schedule depending on our country's status. For this purpose we measured NOx emission from small and middle class marine engines to calculate emission factor and total pollutant emission in our country. With the comparison and analysis of other countries emission control regulation we proposed basic data of total emission from marine engine and future emission control standard in our country. According to our estimation, 62% of total NOx emission of marine engines comes from fishing boat and 38% from commercial vessels. The portion of NOx emission from marine engine is 18.6% of whole country NOx emission. Due to the voyage characteristics of middle and large vessel and necessity of international harmonization of marine engine pollutants emission control standard, it is inevitable to adopt IMO standard for middle and large marine engines. But considering technological and cost effect of fishing boat operating in near sea, it is resonable to set a standard within 80% of measured value at the moment and gradually implement the same IMO standard in near future.

  • PDF

Emission test of a domestic fabricated cathode with higher current density

  • Ju, Yeong-Do;Gong, Hyeong-Seop;Kim, Seung-Hwan;Tanwar, Anil;Seok, Yeong-Eun;Lee, Byeong-Jun;Hong, Yong-Jun;Sin, Jin-U;So, Jun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.205.2-205.2
    • /
    • 2016
  • The emission test a domestic fabricated cathode is conducted using an easy-replaceable-emitter-type test bench. A simple cylindrical button type cathode is dropped vertically into a cathode cup holder. The cathode is heated by a tungsten wire heater located around the cup holder. The cathode temperature is measured by an optical pyrometer. A high voltage pulse power supply gives the anode-cathode gap voltage up to 20 kV with the pulse width of 15 us. The emitted current from the cathode is captured at a faraday cup and is measured using current transformer and oscilloscope. The test bench is installed in the vacuum chamber with easy access door and, therefore, the cathode can be easily replaceable. We confirmed the emission current density of $15A/cm^2$ and $80A/cm^2$ with a domestic fabricated B-type cathode and a Scandate cathode, respectively. The detailed test result for the cathode will be presented.

  • PDF

Characteristics of N2O Emission Factor and Measurements from Gasoline-Powered Passenger Vehicles (국내휘발유 승용차량으로부터의 N2O배출인자 특성연구)

  • Kim, Deug-Soo;Ryu, Jeong-Ho;Yoo, Young-Sook;Jung, Sung-Woon;Kim, Dae-Wook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.179-185
    • /
    • 2007
  • Nitrous oxide ($N_2O$) is an important trace gas in the atmosphere not only because of its large global warming potential (GWP) but also because of the role in the ozone depletion in the stratosphere. It has been known that soil is the largest natural source of $N_2O$ in global emission. However, anthropogenic sources contributing from industrial section is likely to increase with rising the energy consumption, and transportation as well. In this study, a total of 32 gasoline-powered passenger vehicles (ranging from small to large engine's displacement and also ranging from aged catalyst to new catalyst) were tested on the chassis dynamometer system in order to elucidate the characteristics of $N_2O$ emission from automobiles under different driving modes. Ten different driving modes developed by NIER were adapted for the test. The results show that the $N_2O$ emission decreases logarithmically with increase of vehicle speed over the all test vehicles ($N_2O$) emission = -0.062 Ln (vehicle speed) + $0.289,\;r^2=0.97$). It revealed that the larger engine's displacement, the more $N_2O$ emission were recorded. The correlation between $N_2O$ emission and catalyst aging was examined. It found that the vehicles with aged catalyst (odometer record more than 8,0000km) emit more $N_2O$ than those with new catalyst. Average $N_2O$ emission was $0.086{\pm}0.095\;N_2O-g/km$ (number of samples=210) for the all test vehicles over the test driving modes.

Consideration of Measurement Method for SVOCs Emission Rates (실내 준휘발성유기화합물 방출량 측정법에 대한 고찰)

  • Seo, Jang-Hoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.375-382
    • /
    • 2011
  • Semi volatile organic compounds (SVOCs) are used as plasticizers in building materials, interior materials, furniture, consumer electronics. etc. In the home, these SVOCs mix together with house dust. There is thus concern over the health effects of SVOCS in the home, there is a risk that they ini1uence childhood asthma and allergies. It is difficult to measure SVOCs emission rates from building materials or household appliances utilizing the usual test chamber methods, because the boiling points of SVOCs are higher and they are apt to adhere to the surface of the test chamber used. In this study, we introduce FLEC chamber method, passive sampler method and micro chamber method, which are used in Germany and Japan in order to measure SVOCs emission rates. Characteristic, merits and demerits of test methods are also considered.

The vehicle's fuel economy and emission characteristics evaluation by fuel type (자동차의 연료별 연비 및 배출가스 특성 평가)

  • Kang, Eunjeong;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • The purpose of this study is analysis to vehicle's fuel economy and emission gas characteristics by fuel type. The test vehicle were selected to similar weight and performance, the test vehicle was used three representative mode(CVS-75, HWFET and NEDC) in order to evaluation fuel economy and emission gas. For reference, environment pollution cost was calculated on the basis of the exhaust emissions occurred in the test in progress.

The Study on the Exhaust Emission Characteristics in Diesel Engine According to Intake Air Mass Flow (흡기유량에 따른 디젤엔진에서의 배출가스 특성에 대한 연구)

  • Kim, Hyung-Jun;Park, Yong-Hee;Eom, Myoung-Do;Ko, Jong-Min;Hwang, Jin-Woo;Lee, Sang-Hyun;Kee, Ji-Hoon;Kim, Jeong-Soo
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • The investigation was conducted to analyze the exhaust emission characteristics in diesel engine according to intake air mass flow. In this study, the test diesel engine with a 5,899 cubic centimeter displacement and power of the 260 ps was used to analyze the emission characteristics according to the intake air mass flow. In addition, the test modes were applied by the ND-13 and ETC mode. In order to analyze the emission characteristics, the engine dynamometer with 440 kW and emission gas analyzer (AMA-4000) were utilized. From the experimental results, it is revealed that the NOx and HC emissions in the intake air mass flow of large amount have high levels compared to those in the intake air mass flow of small amount in the ND-13 mode. However, the PM emission was shown the opposite trend in the NOx and HC emission due to the trade-off relation between the NOx and PM.