• 제목/요약/키워드: emission spectroscopy

검색결과 1,171건 처리시간 0.034초

OES를 이용한 SBT 박막의 식각 특성 연구 (The Study of Etching Characteristic in $SrBi_2$$Ta_2$$O_9$ Thin Film by Optical Emission Spectroscopy)

  • 신성욱;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제14권3호
    • /
    • pp.185-189
    • /
    • 2001
  • In this paper, since the research on the etching of SrBi$_2$Ta$_2$$O_{9}$(SBT) thin film was few (specially Cl$_2$-base) we had studied the surface reaction of SBT thin films. We have used the OES(optical emission spectroscopy) in high density plasma etching as a function of RF power, dc bias voltage, and Cl$_2$/(Cl$_2$+Ar) gas mixing ratio. It had been found that the etch rate of SBT thin films appeared to be more affected by the physical sputtering between Ar ions and surface of the SBT compared to the chemical reaction. The change of Cl radical density that was measured by the OES as a function of gas combination showed the change of the etch rate of SBT thin films. Therefore, the chemical reactions between Cl radical in plasma and components of the SBT enhanced to increase the etch rates SBT thin films. These results were confirmed by XPS(x-ray photoelectron spectroscopy) analysis.s.

  • PDF

Measurement of Hydroxyl Radical Density at Bio-Solutions Generated from the Atmospheric Pressure Non-Thermal Plasma Jet

  • Kim, Yong Hee;Hong, Young June;Uhm, Han Sub;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.494-494
    • /
    • 2013
  • Atmospheric pressure non-thermal plasma of the needle-typed interaction with aqueous solutions has received increasing attention for their biomedical applications [1]. In this context, surface discharges at bio-solutions were investigated experimentally. We have generated the non-thermal plasma jet bombarding the bio-solution surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy) [2]. Moreover, The non-thermal plasma interaction with bio-solutions has received increasing attention for their biomedical applications. So we researched, the OH radical density of various biological solutions in the surface by non-thermal plasma were investigated by Ar gases. The OH radical density of DI water; deionized water, DMEM Dulbecco's modified eagle medium, and PBS; 1x phosphate buffered saline by non-thermal plasma jet. It is noted that the OH radical density of DI water and DMEM are measured to be about $4.33{\times}1016cm-3$ and $2.18{\times}1016cm-3$, respectively, under Ar gas flow 250 sccm (standard cubic centimeter per minute) in this experiment. The OH radical density of buffer solution such as PBS has also been investigated and measured to be value of about $2.18{\times}1016cm-3$ by the ultraviolet optical absorption spectroscopy.

  • PDF

수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구 (A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma)

  • 조성일;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

Fault Detection of Plasma Etching Processes with OES and Impedance at CCP Etcher

  • Choi, Sang-Hyuk;Jang, Hae-Gyu;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2012
  • Fault detection was carried out in a etcher of capacitive coupled plasma with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and Fluorocarbon plasma with variable change such as pressure and addition of N2 and O2 to assume atmospheric leak, RF power and pressure that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by VI probe was analyzed by statistical method including PCA to determine healthy of process. The main goal of this study is to find feasibility and limitation of OES and Impedances for fault detection by shift of plasma characteristics and to enhance capability of fault detection using PCA.

  • PDF

AKARI IRC INFRARED 2.5-5 ㎛ SPECTROSCOPY OF NEARBY LUMINOUS INFRARED GALAXIES

  • Imanishi, Masatoshi;Nakagawa, Takao;Shirahata, Mai;Ohyama, Yoichi;Onaka, Takashi
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.271-274
    • /
    • 2012
  • We present the result of systematic AKARI IRC infrared $2.5-5{\mu}m$ spectroscopy of >100 nearby luminous infrared galaxies, to investigate the energetic roles of starbursts and optically-elusive buried AGNs. Based on (1) the equivalent widths of the $3.3{\mu}m$ PAH emission features, (2) the optical depths of absorption features, and (3) continuum slopes, we can disentangle emission from starbursts and AGNs. We find that the energetic importance of buried AGNs increases with increasing galaxy infrared luminosities, suggesting that the AGN-starburst connections (and thereby possible AGN feedback to host galaxies) are luminosity dependent.

PECVD Chamber Cleaning End Point Detection (EPD) Using Optical Emission Spectroscopy Data

  • Lee, Ho Jae;Seo, Dongsun;Hong, Sang Jeen;May, Gary S.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.254-257
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for PECVD chamber monitoring. OES is used as an addon sensor to monitoring and cleaning end point detection (EPD). On monitoring plasma chemistry using OES, the process gas and by-product gas are simultaneously monitored. Principal component analysis (PCA) enhances the capability of end point detection using OES data. Through chamber cleaning monitoring using OES, cleaning time is reduced by 53%, in general. Therefore, the gas usage of fluorine is also reduced, so satisfying Green Fab challenge in semiconductor manufacturing.

다양한 기체를 사용한 대기압 플라즈마 젯에 대한 세포 내 활성 산소종의 영향 연구

  • 조혜민;김선자;정태훈;임선희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.542-542
    • /
    • 2013
  • 저온 플라즈마를 발생시키는 대기압 마이크로-플라즈마 젯(Micro-plasma jet)을 이용하여 플라즈마와 세포와의 상호작용에 대한 연구를 진행하였다. 세포의 대사과정에서 생성되는 활성산소 종(Reactive Oxygen Species, ROS)은 세포에 산화 스트레스를 유발시킨다. 이러한 스트레스는 세포 예정사(programmed cell death)의 원인이 된다. 플라즈마 형성 기체로 헬륨, 아르곤, 질소를 사용하여 각각의 기체에 따른 세포의 형태 변화 및 세포 내 활성 산소 종의 영향을 분석하였다. 실험에 사용된 세포는 인체의 폐암 세포[Human lung cancer cell, A549]이며 플라즈마 처리 후 Intracellular ROS assay를 통하여 플라즈마에서 발생되는 활성 산소 종(Reactive Oxygen Species, ROS)이 세포 내에 들어가 활성 산소 종을 증가시키는 것을 확인하였다. 이때, 플라즈마에서 발생되는 활성 산소 종(Reactive Oxygen Species, ROS)들은 광 방출 스펙트럼(Optical Emission Spectroscopy)로 분석하였고, 기체별로 비교하여 보았다. 또한, 이 때 발생되는 플라즈마의 전류-전압 특성에 따른 optical intensity를 비교하였다.

  • PDF

광반사분광기와 신경망을 이용한 플라즈마 공정장비의 실시간 감시 (Real time monitoring of plasma processing equipment using optical emission spectroscopy and neural network)

  • 김대현;김병환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.369-369
    • /
    • 2010
  • 소자제조 공정의 질과 생산성을 향상시키기 위하여 플라즈마 감시가 필요하다. 본 연구에서는 광반사분광기(Optical Emission Spectroscopy)를 이용하여 소스전력의 변화에 따른 플라즈마 상태 데이터를 수집하였다. 수집된 데이터를 이용한 시계열 신경망 감시 모델을 개발하였으며, 개발된 모델과 CUSUM(Cumulative Sum Control Chart)를 결합하여 플라즈마의 이상 상태를 실시간으로 감시하는 기법을 개발하였다. 매우 우수한 감시 성능을 확인할 수 있었다.

  • PDF

Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement

  • Jang, Haegyu;Lee, Hak-Seung;Lee, Honyoung;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • 제23권6호
    • /
    • pp.328-339
    • /
    • 2014
  • In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.

SURFACE CHARACTERIZATION OF CU ELECTRODES IN ELECTROCHEMICAL REDUCTION OF $CO_2$ BY CORE LEVEL X-RAY PHOTOELECTRON SPECTROSCOPY AND VALENCE LEVEL PHOTOELECTRON EMISSION MEASUREMENT

  • Terunuma, Y.;Saitoh, A.;Momose, Y.
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.728-734
    • /
    • 1996
  • To obtain the relation in the electrochemical reduction of $CO_2$ in aqueous $KHCO_3$ colution between an activity for the product and the nature of Cu electrode, the electrode surface was characterized by using two methods: X-ray photoelectron spectroscopy (XPS) and photoelectron emission (PE) measurement. Electrolyses were performed with Cu electrodes pretreated in several ways. The distribution of the products changed drastically with electrolysis time and the pretreatment method. The features in XPS spectra were closely connected with the product distribution. The oxide film at the electrode surface was gradually reduced to bare Cu metal with electrolysis time, resulting in a variation of the product distribution. PE was measured by verying the wavelength of incident light at several temperatures. The dependence of PE on the measurement temperature changed greatly before and after electrolysis.

  • PDF