• Title/Summary/Keyword: emission of ammonia gas

Search Result 127, Processing Time 0.026 seconds

The Effects of Zeolite on Ammonia, Nitrous Oxide Emission, and Forage Yield from Pig Slurry Applied to the Forage Corn Cropping

  • Choi, Ah-Reum;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.274-278
    • /
    • 2020
  • Pig slurry (PS) is the most applicable recycling option as an alternative organic fertilizer. The application of pig slurry has the risk of air pollution via atmospheric ammonia (NH3) and nitrous oxide (N2O) emission. The zeolite has a porous structure that can accommodate a wide variety of cations, thus utilizing for the potential additive of deodorization and gas adsorption. This study aimed to investigate the possible roles of zeolite in mitigating NH3 and N2O emission from the pig slurry applied to the maize cropping. The experiment was composed of three treatments: 1) non-N fertilized control, 2) pig slurry (PS) and 3) pig slurry mixed with natural zeolite (PZ). Both of NH3 and N2O emission from applied pig slurry highly increased by more than 3-fold compared to non-N fertilized control. The NH3 emission from the pig slurry was dominant during early 14 days after application and 20.1% of reduction by zeolite application was estimated in this period. Total NH3 emission through whole period of measurement was 0.31, 1.33, and 1.14 kg ha-1. Nitrous oxide emission in the plot applied with pig slurry was also reduced by zeolite treatment by 16.3%. Significant increases in forage and ear yield, as well as nutrient values were obtained by pig slurry application, while no significant effects of zeolite were observed. These results indicate that the application of zeolite and pig slurry efficiently reduces the emission of ammonia and nitrous oxide without negative effects on maize crop production.

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Growth of GaN on sapphire substrate by GSMBE(gas source molecular beam epitaxy) using ammonia as nitrogen source (Nitrogen source로 ammonia를 사용해 GSMBE로 성장된 GaN 박막 특성)

  • Cho Hae-jong;Han Kyo-yong;Suh Young-suk;Misawa Yusuke;Park Kang-sa
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.501-504
    • /
    • 2004
  • High quality GaN layer was obtained on 0001 sapphire substrate using ammonia($NH_3$) as a nitrogen source by gas source molecular beam epitaxy. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN. In-situ RHEED(reflection high electron energy diffraction) appeared streaky-like pattern. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from plane of GaN has exhibited as narrow as 8arcmin and surface roughness was 7.83nm. Photoluminescence measurement of GaN was investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. The GaN epitaxy layer according to various growth condition was investigated.

  • PDF

Combustion Emission Gas Analysis and Health Hazard Assessment about P. densiflora and Q. variabilis Surface Fuel Beds (소나무, 굴참나무 낙엽의 연소 방출가스 분석 및 건강 위험성 평가)

  • Kim, Dong-Hyun;Kim, Eung-Sik;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.24-31
    • /
    • 2009
  • Based on fallen leaves of major Korean conifer species 'Pinus densiflora' and major Korean broadleaved species 'Quercus variabilis', this study sought to identify combustion emission gas types and measure their concentration by means of FTIR (Fourier Transform Infrared) spectrometer. As a result, it was found that there were total 13 types of combustion gas detected from fallen leaves of Pinus densiflora and Quercus variabilis, such as carbon monoxide, carbon dioxide, acetic acid, butyl acetate, ethylene, methane, methanol, nitrogen dioxide, ammonia, hydrogen fluoride, sulfur dioxide and hydrogen bromide. Notably, nitrogen monoxide was additionally detected from fallen leaves of Quercus variabilis. It was found that the overall concentration of combustion gas emitted from the fallen leaves of Pinus densiflora was 4.5 times higher than that from fallen leaves of Quercus variabilis. Particularly, it was found that emission concentration of some combustion emission gas types like carbon monoxide, carbon dioxide and butyl acetate exceeded the upper limit of their time-weighted average (TWA, ppm), while the emission concentration of carbon monoxide and carbon dioxide exceeded their short-term exposure limit (STEL, ppm) for both species. Thus, it was found that carbon monoxide and carbon dioxide have higher hazard to health than other gas types, because these two gas types account for higher than 99% of overall gas emission due to combustion of surface fire starting from litter layer in forest.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Emission Characterization of Ammonia Produced from Swine Nightsoil (돈분뇨로부터 발생하는 암모니아의 배출 특성)

  • Lee, Eun-Young;Lee, So-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.308-314
    • /
    • 2010
  • This study was conducted to investigate the characteristics and concentrations of ammonia produced from the livestock swine nightsoil treated with or without the livestock - environment improving agents. Odor generating device made of acryl was made by volume of 96 L to sample the ammonia odor. When swine night soil was placed in the device, concentration of ammonia averaged out at about 23.4 ppmv and ranged from 16 ppmv to 40 ppmv. Removal efficiencies of them showed 50% to 90% as compared to initial level before spraying, when the spray type agents were used immediately after they purchased. The persistence of the efficiency was retained for first two days. Among the agents, the natural deodorant showed the best efficiency of 87 to 99%. To evaluate the effects of 5 kinds of dietary probiotic powders, the experiments were conducted and based dietary treatments without antibiotics on growing piglets. In experiments, 60 piglets ($6.3{\pm}0.2\;kg$) were subjected to a 35-day feeding trial in which the effects of the dietary probiotic powder on the ammonia emission were compared. The ammonia gas emission was measured for every week. Ammonia emission from the swine nightsoil obtained from piglets supplemented with the probiotics power was lower than that of the nightsoil obtained from pigs in the control treatment (without probiotics). In ammonia removal efficiencies of the experimental groups, some products showed from 71% to 99% removal efficiencies throughout the entire period as compared to the control group. On the other hand, initial reduction of ammonia in some product was effective temporarily. After then, it did not show any reduction efficiency of ammonia.

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

Emission characteristic of ammonia in cement mortars using different sand from area of production

  • Jang, Hongseok;So, Hyoungseok;So, Seungyoung
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • This paper discusses the influence of organic matter contained in aggregate on the emission characteristic of ammonia ($NH_3$) from cement mortar. $NH_3$ can be released to indoor-outdoor environment through diffusion in mortar (or concrete) and have resulted in the increasing air pollution, and especially well known as a harmful gas for the human body. The concentration of $NH_3$ released from cement concrete was then compared to the contents of organic matter contained in the aggregate. The result indicates that the contents of organic matter in the aggregate significantly differ with types of aggregate from different areas of production. The organic matter becomes organic nitrogen through the process of microbial breakdown for a certain period and pure ammonium ion ($NH_4{^+}$) is produced from the organic nitrogen. The $NH_4{^+}$ was reacted with alkaline elements in the cement and released as $NH_3$ from cement concrete through a volatile process. The released $NH_3$ was proportional to the contents of $NH_4{^+}$ adsorbed in the aggregate from different areas of production and the concentrations of $NH_3$ emission from cement mortar according to the aggregate differ by more than 4 times.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Effect of Lactobacillus acidophilus based probiotic product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs

  • Sun, Hao Yang;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.437-443
    • /
    • 2020
  • The aim of this study was to evaluate the effect of Lactobacillus acidophilus probiotic (LAP) product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs. In total, 14 Beagle dogs with an average initial body weight of 10.19 ± 0.61 kg were randomly assigned into two dietary treatments,with and without LAP supplementation, for a 28-day feeding trial. At the end of the experiment, there was no significant (p > 0.05) difference in the concentration of serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), white blood cell (WBC), red blood cell (RBC), blood lymphocyte percentage, fecal hydrogen sulfide (H2S) and total mercaptans (R.SH) emission, and fecal coliforms counts. However, the serum concentrations of the triglyceride and fecal ammonia (NH3) emission of the LAP treatment were significantly (p < 0.05) decreased in the group compared with the CON dogs. Fecal total lactic acid bacteria counts were significantly (p < 0.05) increased in the LAP treatment. In conclusion, the supplementation of LAP in Beagle dog diets could decrease the blood triglyceride level and enhance the gut Lactobacillus count which may have positive effects on dogs.