• Title/Summary/Keyword: emission efficiency

Search Result 1,892, Processing Time 0.031 seconds

Analysis of Regional Implementation Conditions and Industrial Strategies for Carbon Neutrality in China (중국 탄소중립 지역별 이행여건 및 산업전략 분석)

  • Yu-jeong Jeon;Su-han Kim
    • Analyses & Alternatives
    • /
    • v.7 no.2
    • /
    • pp.179-207
    • /
    • 2023
  • Carbon neutrality, the international community's practical challenge in response to climate change, is becoming a key industrial strategy for the future development of nations. Despite concerns that China, as an economic powerhouse in the G2, may face challenges leading global climate change efforts due to its high-carbon-emitting industrial structure, it is leveraging carbon neutrality to enhance its industrial competitiveness. The Chinese government has formulated national policies for achieving carbon neutrality and detailed sector-specific plans to implement them. In particular, it aims to leverage carbon neutrality industrial strategies as a lever for adjusting the domestic industrial structure and fostering new industries, at the same time responding to international climate norms and external pressures. However, the effectiveness of carbon-neutral industrial strategies is expected to vary based on regional conditions such as economic and industrial levels. This article analyzes the regional conditions for implementing carbon neutrality in China, as well as the contents and characteristics of major industrial policies. Due to differing levels of economic development and industrial structures, significant variations in carbon emissions, size, emission sources, and efficiency are inevitable across regions. These disparities introduce diverse initial conditions and endogenous factors in pursuing carbon-neutral goals, limiting the direction and implementation of carbon-neutral industrial strategies favoring certain regions. In particular, the extent of policy autonomy granted to local governments regarding carbon neutrality implementation will influence the regional dynamics of central-local environmental governance. Consequently, it is crucial to emphasize regional monitoring alongside comprehensive national research to accurately navigate the path towards carbon neutrality in China. In summary, the article underscores the importance of understanding regional variations in economic development, industrial structure, and policy autonomy for successful carbon neutrality implementation in China. It highlights the need for regional monitoring and comprehensive national research to determine a more precise direction for achieving carbon neutrality.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.

Characteristics of the Carbon Capture and Utilization System in Methanol Fuel Propulsion Ships Based on the Hydrogen Fuel Cell Hybrid System (수소 연료전지 하이브리드 시스템 기반 메탄올 연료추진 선박에서 CCU 적용에 따른 시스템 특성 분석)

  • YoonHo Lee;JunHo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.239-251
    • /
    • 2024
  • In this study, a hydrogen fuel cell process based on methanol was developed to reduce greenhouse gas emissions. In Case1, the methanol fuel engine system was designed to investigate the emission of exhaust gas when methanol was supplied as fuel instead of gasoline to the engine. In Case2, a hydrogen fuel cell system was designed by adding a methanol reforming system to Case1. This hybrid system produced gray hydrogen and combined the output of the engine and fuel cell to drive the ship. However, gray hydrogen emits carbon in the process of producing hydrogen. To address this problem, a carbon capture and utilization (CCU) system was added to Case3. The CO2 of the flue gas discharged from Case2 was synthesized with gray hydrogen to produce blue methanol. The results of the case studies revealed that the optimal operating conditions were 220 ℃, 500 kPa, SCR = 1.0, and flow ratio = 0.7. The system of Case3 reduced carbon emissions by 42% compared with that Case1. Thus, the hybrid system of Case3 could considerably reduce the ship's CO2 emissions.

Comparison of CNG and LPG Combustion Characteristics in a Large-sized Gas Engine (대형 가스엔진에서 CNG와 LPG 연료의 연소 특성 비교)

  • Yongrae Kim;Cheolwoong Park;Hyungjun Jang;Sangho Lee;Young Choi;Sunyoep Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • An easy approach to replacing older diesel engines is to replace them with gas engines using fuels such as CNG or LPG. However, fuels such as LPG have not been applied to large gas engines in many cases, so it is not easy to predict the performance of gas engines based on CNG fuel. Accordingly, in this study, we applied LPG fuel to a CNG-based large gas engine and examined the performance and emission characteristics. In particular, the results were confirmed through tests to see how effective EGR, which is widely used for NOx reduction, is applied. As a result, in the case of LPG, even though the operating conditions were secured to a level that excludes serious knocking, mild knocking at high loads was still found to be more frequent than CNG. However, it was possible to secure an output level similar to CNG in the high-speed range. Efficiency was higher due to a faster combustion speed than CNG, and it was confirmed that it was possible to simultaneously reduce NOx and the frequency of mild knocking through the application of EGR.

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

The Effect of PET/CT Images on SUV with the Correction of CT Image by Using Contrast Media (PET/CT 영상에서 조영제를 이용한 CT 영상의 보정(Correction)에 따른 표준화섭취계수(SUV)의 영향)

  • Ahn, Sha-Ron;Park, Hoon-Hee;Park, Min-Soo;Lee, Seung-Jae;Oh, Shin-Hyun;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • Purpose: The PET of the PET/CT (Positron Emission Tomography/Computed Tomography) quantitatively shows the biological and chemical information of the body, but has limitation of presenting the clear anatomic structure. Thus combining the PET with CT, it is not only possible to offer the higher resolution but also effectively shorten the scanning time and reduce the noises by using CT data in attenuation correction. And because, at the CT scanning, the contrast media makes it easy to determine a exact range of the lesion and distinguish the normal organs, there is a certain increase in the use of it. However, in the case of using the contrast media, it affects semi-quantitative measures of the PET/CT images. In this study, therefore, we will be to establish the reliability of the SUV (Standardized Uptake Value) with CT data correction so that it can help more accurate diagnosis. Materials and Methods: In this experiment, a total of 30 people are targeted - age range: from 27 to 72, average age : 49.6 - and DSTe (General Electric Healthcare, Milwaukee, MI, USA) is used for equipment. $^{18}F$- FDG 370~555 MBq is injected into the subjects depending on their weight and, after about 60 minutes of their stable position, a whole-body scan is taken. The CT scan is set to 140 kV and 210 mA, and the injected amount of the contrast media is 2 cc per 1 kg of the patients' weight. With the raw data from the scan, we obtain a image showing the effect of the contrast media through the attenuation correction by both of the corrected and uncorrected CT data. Then we mark out ROI (Region of Interest) in each area to measure SUV and analyze the difference. Results: According to the analysis, the SUV is decreased in the liver and heart which have more bloodstream than the others, because of the contrast media correction. On the other hand, there is no difference in the lungs. Conclusions: Whereas the CT scan images with the contrast media from the PET/CT increase the contrast of the targeted region for the test so that it can improve efficiency of diagnosis, there occurred an increase of SUV, a semi-quantitative analytical method. In this research, we measure the variation of SUV through the correction of the influence of contrast media and compare the differences. As we revise the SUV which is increasing in the image with attenuation correction by using contrast media, we can expect anatomical images of high-resolution. Furthermore, it is considered that through this trusted semi-quantitative method, it will definitely enhance the diagnostic value.

  • PDF