DOI QR코드

DOI QR Code

Characteristics of the Carbon Capture and Utilization System in Methanol Fuel Propulsion Ships Based on the Hydrogen Fuel Cell Hybrid System

수소 연료전지 하이브리드 시스템 기반 메탄올 연료추진 선박에서 CCU 적용에 따른 시스템 특성 분석

  • YoonHo Lee (Division of Coast Guard, Mokpo National Maritime University) ;
  • JunHo Kim (Division of Marine Mechatronics Engineering, Mokpo National Maritime University)
  • 이윤호 (국립목포해양대학교 해양경찰학부 ) ;
  • 김준호 (국립목포해양대학교 해양메카트로닉스학부)
  • Received : 2024.01.30
  • Accepted : 2024.04.26
  • Published : 2024.04.30

Abstract

In this study, a hydrogen fuel cell process based on methanol was developed to reduce greenhouse gas emissions. In Case1, the methanol fuel engine system was designed to investigate the emission of exhaust gas when methanol was supplied as fuel instead of gasoline to the engine. In Case2, a hydrogen fuel cell system was designed by adding a methanol reforming system to Case1. This hybrid system produced gray hydrogen and combined the output of the engine and fuel cell to drive the ship. However, gray hydrogen emits carbon in the process of producing hydrogen. To address this problem, a carbon capture and utilization (CCU) system was added to Case3. The CO2 of the flue gas discharged from Case2 was synthesized with gray hydrogen to produce blue methanol. The results of the case studies revealed that the optimal operating conditions were 220 ℃, 500 kPa, SCR = 1.0, and flow ratio = 0.7. The system of Case3 reduced carbon emissions by 42% compared with that Case1. Thus, the hybrid system of Case3 could considerably reduce the ship's CO2 emissions.

본 연구에서는 온실가스 배출을 감축하기 위해 메탄올을 추진 연료로 사용하는 선박에 수소 연료전지 시스템이 추가된 하이브리드 시스템 공정을 설계하였다. Case1에서는 메탄올 연료 엔진 시스템을 설계하여, 엔진에 가솔린 대신 메탄올을 연료로 공급했을 때의 배기가스 배출량을 알아보았다. Case2에서는 Case1에 메탄올 개질 시스템을 추가해, 수소연료전지 시스템을 설계하였다. 이 하이브리드 시스템에서는 그레이 수소를 생산하며, 엔진과 연료전지의 출력을 조합하여 선박을 구동한다. 하지만 그레이 수소는 수소를 생산하는 과정에서 탄소를 배출한다는 단점이 있다. 이 점을 보안하기 위해 Case3에서는 CCU시스템을 추가하였다. Case2에서 배출한 Flue gas의 이산화탄소를 포집한 후, 그레이 수소와 합성해 블루 메탄올을 생산하였다. 본 연구에서는 Case study를 통해 개질 온도220℃, 개질 압력500kPa, SCR은 1.0, flow ratio가 0.7일 때 최적의 운전조건임을 알 수 있었다. Case3의 시스템은 Case1에 비해 탄소 배출량을 42% 감소시켰다. 결과적으로, Case3의 하이브리드 시스템을 통해 선박의 이산화탄소 배출을 유의미하게 저감할 수 있을 것으로 예상한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2023-0048).

References

  1. Cheon, U. R., K. S. Ahn, and H. H. Shin(2018), Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam, The Korean Hydrogen & New Energy Society, Vol. 29, No. 1, pp. 19-24. 
  2. Cho, H. J., S. B. Hyeon, S. G. Jung, H. J. Ji and J. H. Choi(2022), A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships, Trans. of the Korean Hydrogen and New Energy Society, Vol. 33, No. 6, pp. 733-742.  https://doi.org/10.7316/KHNES.2022.33.6.733
  3. Kim, H. S.(2011), Effect of CeO2-ZrO2 enhancer on Cu/ZnO/Al2O3 Methanol Synthesis Catalyst, Korea University. 
  4. Kim, H. J., S. K. Jeong, K. T. Park, and M. H. Youn(2015), Catalytic Conversion of Carbon Dioxide to Methanol by Hydrogenation, The Korean Society of Industrial and Engineering Chemistry, Vol. 18, No. 2. 
  5. Kim, H. C., H. -M. Jeon, and J. -S. Kim(2022), Study on an RTGC hybrid system for energy saving of harbor cranes. Journal of Advanced Marine Engineering and Technology, 46(6), pp. 402-408.  https://doi.org/10.5916/jamet.2022.46.6.402
  6. Larminie, J. and A. Dicks(2003), Fuel Cell Systems Explained, Wiley, p. 80. 
  7. Lee, K. Y.(2014), Recent research trends on hydrogen production through water gas conversion and steam reforming, Korea Institute of Science and Technology Information. 
  8. Li, N., X. Cui, J. Zhu, M. Zhou, V. Liso, G. Cinti, S. L. Sahlin, and S. S. Araya(2023), A Review of Reformed Methanol-High Temperature Proton Exchange Membrane Fuel Cell Systems, Renewable and Sustainable Energy Reviews, Vol. 182, 113395. 
  9. MAN Energy Solutions(2022), CEAS Engine Data report 6G80ME - C10.5 - LGIM - EGRTC, p. 16. 
  10. Minnehan, J. J. and J. W. Pratt(2017), Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels, SANDIA REPORT SAND2017-12665. 
  11. Nazerifard, R., L. Khani, M. Mohammadpourfard, B. Mohammadi-Ivatloo, and G. G. Akkurt(2021), Design and Thermodynamic Analysis of a Novel Methanol, Hydrogen, and Power Trigeneration System Based on Renewable Energy and Flue Gas Carbon Dioxide, Energy Conversion and Management, Vol. 233, 113922. 
  12. Roh, G., H. Kim, H. Jeon, and K. Yoon(2019), Fuel Consumption and CO2 Emission Reductions of Ships Powered by a Fuel-Cell-Based Hybrid Power Source, Journal of Marine Science and Engineering, 7(7), 230. 
  13. Shim, J. P., C. R. Lee, and H. K. Lee(2012), Principles and Application of Hydrogen Fuel Cells as Renewable Energy Source, The Korean Institute of Electrical Engineers, 61(11), pp. 15-22. 
  14. Vuong, Q. D., Y. Kim, and J. -W. Lee(2022). Study on the vibration behavior of a G/T 3-ton class composite fishing boat hybrid propulsion system. Journal of Advanced Marine Engineering and Technology, 46(6), pp. 317-325.  https://doi.org/10.5916/jamet.2022.46.6.317
  15. Woo, H. I., Y. H. Jang, and Y. S. Choi(2020), Study on Designing Battery Energy Storage System (BESS) Related to Renewable Energy and Power Efficiency According to Charging - Discharging, Journal of Next-generation Convergence Technology Association, Vol. 4, No. 1, pp. 61-69. https://doi.org/10.33097/JNCTA.2020.04.01.61