• Title/Summary/Keyword: emission computed tomography

Search Result 396, Processing Time 0.029 seconds

Current Status and Future Perspective of PET (PET 이용 현황 및 전망)

  • Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Positron Emission Tomography (PET) is a nuclear medicine imaging modality that consists of systemic administration to a subject of a radiopharmaceutical labeled with a positron-emitting radionuclide. Following administration, its distribution in the organ or structure under study can be assessed as a function of time and space by (1) defecting the annihilation radiation resulting from the interaction of the positrons with matter, and (2) reconstructing the distribution of the radioactivity from a series of that used in computed tomography (CT). The nuclides most generally exhibit chemical properties that render them particularly desirable in physiological studies. The radionuclides most widely used in PET are F-18, C-11, O-15 and N-13. Regarding to the number of the current PET Centers worldwide (based on ICP data), more than 300 PET Centers were in operation in 2000. The use of PET technology grew rapidly compared to that in 1992 and 1996, particularly in the USA, which demonstrates a three-fold rise in PET installations. In 2001, 194 PET Centers were operating in the USA. In 1994, two clinical and research-oriented PET Centers at Seoul National University Hospital and Samsung Medical Center, was established as the first dedicated PET and Cyclotron machines in Korea, followed by two more PET facilities at the Korea Cancer Center Hospital, Ajou Medical Center, Yonsei University Medical Center, National Cancer Center and established their PET Center. Catholic Medical School and Pusan National University Hospital have finalized a plan to install PET machine in 2002, which results in total of nine PET Centers in Korea. Considering annual trends of PET application in four major PET centers in Korea in Asan Medical Center recent six years (from 1995 to 2000), a total of 11,564 patients have been studied every year and the number of PET studies has shown steep growth year upon year. We had 1,020 PET patients in 1995. This number increased to 1,196, 1,756, 2,379, 3,015 and 4,414 in 1996,1997,1998,1999 and 2000, respectively. The application in cardiac disorders is minimal, and among various neuropsychiatric diseases, patients with epilepsy or dementia can benefit from PET studios. Recently, we investigated brain mapping and neuroreceptor works. PET is not a key application for evaluation of the cardiac patients in Korea because of the relatively low incidence of cardiac disease and less costly procedures such as SPECT can now be performed. The changes in the application of PET studios indicate that, initially, brain PET occupied almost 60% in 1995, followed by a gradual decrease in brain application. However, overall PET use in the diagnosis and management of patients with cancer was up to 63% in 2000. The current medicare coverage policy in the USA is very important because reimbursement policy is critical for the promotion of PET. In May 1995, the Health Care Financing Administration (HCFA) began covering the PET perfusion study using Rubidium-82, evaluation of a solitary pulmonary nodule and pathologically proven non-small cell lung cancer. As of July 1999, Medicare's coverage policy expanded to include additional indications: evaluation of recurrent colorectal cancer with a rising CEA level, staging of lymphoma and detection of recurrent or metastatic melanoma. In December of 2001, National Coverage decided to expand Medicare reimbursement for broad use in 6 cancers: lung, colorecctal, lymphoma, melanoma, head and neck, and esophageal cancers; for determining revascularization in heart diseases; and for identifying epilepsy patients. In addition, PET coverage is expected to further expand to diseases affecting women, such as breast, ovarian, uterine and vaginal cancers as well as diseases like prostate cancer and Alzheimer's disease.

The Diagnostic Utility of PET-CT for the Preoperative Evaluation of Lymph Node Metastasis in Gastric Cancer Patients (위암 환자의 수술 전 림프절 전이 평가를 위한 PET-CT의 진단적 유용성)

  • Park, Sung-Hyuk;Cho, Min-Su;Ryu, Hoon;Bae, Keum-Seok;Kim, Ik-Yong;Kim, Dae-Sung
    • Journal of Gastric Cancer
    • /
    • v.8 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • Purpose: The purpose of this study was to assess the diagnostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for detecting the lymph node (LN) metastasis of gastric cancer. Materials and Methods: 119 patients (M : F=89 : 30; mean age: 64) with gastric cancer were referred for preoperative FDG-PET/CT scanning and spiral enhanced abdominal pelvic CT from June 2006 to July 2008, and these were the subjects of our study. All the patients underwent curative radical gastrectomy and lymph node dissection. A final diagnosis was made for all the patients by the histology of the surgical specimens. Results: Both PET/CT and enhanced CT showed similar sensitivity for detecting regional lymph node metastasis (32.6% vs 39.5%, respectively). PET/CT was more accurate than enhanced CT for detecting regional lymph node metastasis (67.2% vs 63.0%, respectively), and PET/CT showed better specificity (86.8% vs 76.3, respectively) and a better positive predictive value (PPV) (58.3% vs 48.6%, respectively). PET/CT showed better specificity (98.0% vs 88.2%, respectively) and accuracy (79.4% vs 73.9%, respectively) than enhanced CT for detecting early gastric cancer. PET/CT showed better specificity (64.0% vs 52.0%, respectively), a better PPV (60.9% vs 57.1%), a better negative predictive value (NPV) (48.5% vs 46.4%, respectively) and better accuracy (53.6% vs 51.8%, respectively) than enhanced CT for detecting advanced gastric cancer. Conclusion: FDG-PET/CT is more usefulness than enhanced CT for making the preoperative diagnosis of regional LN metastases from gastric cancers.

  • PDF

Evaluation of Myocardial Oxygen Consumption with $^{11}C$-Acetate and 3D PET/CT: By Applying Recirculation Correction Method and Modified One-Compartmental Tracer Kinetic Modeling ($^{11}C$-Acetate와 3차원 PET/CT를 이용한 심근의 산소 소모량 평가: 재순환 교정법 및 수정 단일구획 추적자 동적 모델 적용)

  • Chun, In-Kook;Hwang, Kyung-Hoon;Lee, Sang-Yoon;Kim, Jin-Su;Lee, Jae-Sung;Shin, Hee-Won;Lee, Min-Kyung;Yoon, Min-Ki;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.4
    • /
    • pp.275-284
    • /
    • 2008
  • Purpose: We intended to evaluate myocardial oxygen consumption ($MVO_2)$ by applying recirculation correction and modified one-compartment model to have a reference range of $MVO_2$ in normal young population and to reveal the effect of recirculation on time-activity curve (TAC). Materials and Methods: In nine normal male volunteers with mean age of $26.3{\pm}4.0$, $MVO_2$ was estimated with 925 MBq (25mCi) of $^{11}C$-Acetate (Neuroscience Research Institute, Gachon University of Medicine and Science, Incheon, Korea) and PET/CT (Biograph 6, Siemens Medical Solution, Germany). Analysis software such as $MATLAB^{(R)}$ v7.1 (Mathworks, Inc., United States), $Excel^{(R)}$ 2007 (Microsoft, United States), and $SPSS^{(R)}$ v12.0 (Apache Software Foundation, United States) were used. Twenty three frames were of $12{\times}10$, $5{\times}60$, $3{\times}120$, $2{\times}300's$ duration, respectively. The modified one-compartmental model and the recirculation correction method were applied. Statistical analysis was performed by using Test of Normality, ANOVA and Post-Hoc (Scheffe's) analysis, and p-value less than 0.05 was considered as significant. Results: The normal reference ranges of $MVO_2$ were presented as $3.18-4.64\;{\times}\;10^{-4}\;ml/g/sec$, $1.91-3.94\;{\times}\;10^{-4}\;ml/g/sec$, $4.31-6.40\;{\times}\;10^{-4}\;ml/g/sec$, $2.84-4.53\;{\times}\;10^{-4}\;ml/g/sec$ and $3.42-5.00\;{\times}\;10^{-4}\;ml/g/sec$ in the septum, the inferior wall, the lateral wall, the anterior wall and the entire wall, respectively. In addition, it was noted that the dual exponentiality of the clearance curve is due to the recirculation effect and that the characteristic of the curve is essentially mono-exponential. Conclusion: $^{11}C$-Acetate is a radiotracer worthwhile to assess $MVO_2$. Re-circulated $^{11}C$ can influence TAC of $^{11}C$ in myocadia and so the recirculation correction must be considered when measuring $MVO_2$.

A Case of Complete Remission after Concurrent Chemoradiotherapy for Esophageal Squamous cell Carcinoma with Solitary Bone Metastasis (고립성 골 전이를 동반한 식도편평세포암에서 동시 항암화학방사선 요법 후 완전관해를 보인 1례)

  • Woo Jin Lee;Hoon Jai Chun;Ye Ji Kim;Sun Young Kim;Min Ho Seo;Hyuk Soon Choi;Eun Sun Kim;Bora Keum;Yoon Tae Jeen;Hong Sik Lee;Soon Ho Um;Chang Duck Kim;Ho Sang Ryu
    • Journal of Digestive Cancer Research
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • There is no established treatment for esophageal carcinoma with metastasis. For the metastatic esophageal squamous cell carcinoma, chemotherapy or best supportive care according to patient's performance status are accepted as an available treatment. We report a case of complete remission after concurrent chemoradiotherapy for esophageal squamous cell carcinoma with metastatic lesion in 5th thoracic vertebrae. A 57-year-old man with ongoing dysphagia and weight loss was admitted to our hospital. On the endoscopic and radiologic imaging evaluation,the patient was diagnosed as a squamous cell carcinoma of esophagus with solitary metastatic lesion in 5th thoracic vertebrae. The patient was treated with combination chemotherapy (5-fluorouracil (5-FU) and cisplatin) and concurrent radiotherapy for two months to relieve dysphagia. Because metastatic lesion in thoracic vertebrae was located near the primary esophageal tumor, the metastatic lesion could be included within the radiation field. After concurrent chemoradiotherapy, consecutive 4 cycles of chemotherapy had been carried out. Primary esophageal tumor with metastatic lymph nodes and metastatic lesion in 5th thoracic vertebrae disappeared on follow up computed tomography (CT) and positron emission tomography-CT (PET-CT). Follow up endoscopic biopsy revealed no remnant malignant cells at previous primary cancer lesion.

  • PDF

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

The Diagnostic Value of 99mTc DMSA Renal Scan SPECT Images in Addition to Planar Image in Children with Urinary Tract Infection (소아 요로 감염에서 99mTc DMSA 신스캔 평면영상에 추가된 SPECT 영상의 진단적 가치)

  • Yang Jea-Young;Yang Jung-An;Seo Jung-Wan;Lee Seung-Joo
    • Childhood Kidney Diseases
    • /
    • v.5 no.1
    • /
    • pp.22-29
    • /
    • 2001
  • Purpose : 99mTc DMSA renal scan have been widely used not only for tile evaluation of renal scars but also for the diagnosis of acute pyelonephritis. Recent studies have shown SPECT images have higher accuracy than the planar images with some controversy. We evaluated the availability of the SPECT images adding to planar images for the diagnosis of acute pyelonephritis(APN) and renal scar in children with urinary tract infection (UTI). Methods : 130 children with UTI (260 kidney units) and 22 follow-up children (44 kidney units) were included between January 1, 1997 and July 31, 1999 at Ewha University Mokdong Hospital. Planar Anterior and posterior images and SPECT axial and coronal images of 99mTc DMSA renal scan were obtained with Starcam 4000-i U.S.A. GE at 3 hours after 99mTc DMSA I.V. injection. The data were analyzed by Chi square test after Yates's correction. Results : The detection rate of the acute pyelonephritis by SPECT images was 12.3$\%$ higher than that of planar images ($47.7\%\;vs\;35.4\%$) by the patient and 6.9$\%$ higher also ($31.9\%\;vs\;25.4\%$) by the kidney unit. 18 kidney units with negative planar images had focal defect in 10 kidney units (3.8$\%$) and multifocal defect in 8 kidney units (3.1$\%$) on SPECT images, but 1 kidney unit with positive planar image had negative SPECT image. SPECT images were superior to tile planar images in 17.3$\%$. identical in 82.3$\%$ and inferior in 0.4$\%$ to planar image. The detection rate of tile renal scars by SPECT images was 13.7$\%$ higher than planar images by the patient ($68.2\%\;vs\;54.5\%$) and 6.8$\%$ higher also ($43.2\%\;vs\;36.4\%$) by the kidney unit. SPECT images were superior to the planar images in 17.3$\%$ and identical in 82.3$\%$ to planar image. Conclusion SPECT images had shown higher detection rate and better image than planar images for the diagnosis of the acute pyelonephritis and the evaluation of the renal scars. (J. Korean Soc Pediatr Nephrol 5 : 22- 9, 2001)

  • PDF

Assessment of Viability in Regional Myocardium with Reversed Redistribution by Thallium Reinjection in Patients with Acute Myocardial Infarction (급성심근경색 환자에서 역재분포를 보인 심근의 Thallium 재주사에 의한 생존능의 평가)

  • Yoon, Seok-Nam;Park, Chan-H.;Pai, Moon-Sun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.509-515
    • /
    • 1998
  • Purpose: The aim of this study was to evaluate whether T1-201 reinjection distinguishes viable from non-viable myocardium in patients with reverse redistribution after acute myocardial infarction. Materials and Methods: We studied 42 patients with acute myocardial infarction (age, $55{\pm}12$ years). Eighteen (43%) out of 42 showed reverse redistribution on dipyridamole stress-4 hour redistribution T1-201 single photon emission computed tomography (SPECT). T1-201 reinjection was performed at 24 hours. Reverse redistribution was defined as worsening of perfusion defect at 4 hour delayed scan. All patients underwent follow-up echocardiography in 4 months to assess regional wall motion improvement. T1-201 uptake on reinjection images were analyzed for the prediction of myocardial wall motion improvement. Results: Of 36 segments with reverse redistribution, 17 segments showed normal wall motion on echocardiography, while 19 segments showed wall motion abnormalities. Of 19 the segments with reverse redistribution, 11 (58%) showed enhanced uptake after 24 hour reinjection. Myocardial wall motion was improved in 10 of 11 segments (90%) with enhanced uptake on reinjection. Wall motion improvement was not seen in 5 of 8 segments (63%) without enhanced thallium uptake. When myocardial viability was assessed by the uptake on reinjection image, nine of 10 segments (90%) with normal or mildly decreased uptake showed improved wall motion. Wall motion was not improved in 5 of 9 segments (16%) with severely decreased uptake. Conclusion: In patients with acute myocardial infarction, T1-201 reinjection imaging on myocardial segments with reverse redistribution has a high positive predictive value in the assessment of myocardial viability.

  • PDF

Tc-99m MAG3 SPECT on Transplanted Kidney (이식 신장에서 시행한 Tc-99m MAG3 SPECT)

  • Ryu, Jong-Gul;Kim, Soon;Zeon, Seok-Kil
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.519-526
    • /
    • 1999
  • Purpose: This study was designed to evaluate the usefulness of a technetium-99m mercaptoacetyltriglycine (Tc-99m MAG3) single photon emission computed tomography (SPECT) performed on transplanted kidney. Materials and Methods: Thirty renal transplant patients were included in this study. Planar scan was performed for 30 minutes using 555 MBq Tc-99m MAG3. A post-voiding SPECT scan was acquired on the third, seventh, fourteenth and twenty eighth day after transplantation. Results: SPECT scan showed interpretable image quality in 26 of 30 patients (86.7%) and 84 in 120 scans (70%). Fourteen of 26 patients with interpretable SPECT image showed decreased or increased radioactivity, but only 5 had abnormal findings on the planar scan. Focal SPECT defects were seen in allografts with normal function (n=3), acute tubular necrosis (n=3), and acute rejection (n=2). The defects are thought to reflect focally underperfused renal parenchyme or, in normal allografts, an artifact from uneven radioactivity distribution. Four of 10 patients with renal arterial variation showed focally decreased radioactivity and SPECT helped guide funker studies that confirmed the exact cause. Five of 10 patients with acute tubular necrosis or acute rejection showed focally decreased radioactivity, but its relation to the patients' clinical course was not clear. Focally increased radioactivity was observed in 5 allografts with normal function and 1 with double ureter in which local clearance delay was observed. Conclusion: Tc-99m MAG3 SPECT renal scan can detect additional focal abnormalities compared to planar scan. Further study is necessary to elucidate the exact clinical significance of the SPECT findings.

  • PDF

Quantitative Study of Annular Single-Crystal Brain SPECT (원형단일결정을 이용한 SPECT의 정량화 연구)

  • 김희중;김한명;소수길;봉정균;이종두
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 1998
  • Nuclear medicine emission computed tomography(ECT) can be very useful to diagnose early stage of neuronal diseases and to measure theraputic results objectively, if we can quantitate energy metabolism, blood flow, biochemical processes, or dopamine receptor and transporter using ECT. However, physical factors including attenuation, scatter, partial volume effect, noise, and reconstruction algorithm make it very difficult to quantitate independent of type of SPECT. In this study, we quantitated the effects of attenuation and scatter using brain SPECT and three-dimensional brain phantom with and without applying their correction methods. Dual energy window method was applied for scatter correction. The photopeak energy window and scatter energy window were set to 140ke${\pm}$10% and 119ke${\pm}$6% and 100% of scatter window data were subtracted from the photopeak window prior to reconstruction. The projection data were reconstructed using Butterworth filter with cutoff frequency of 0.95cycles/cm and order of 10. Attenuation correction was done by Chang's method with attenuation coefficients of 0.12/cm and 0.15/cm for the reconstruction data without scatter correction and with scatter correction, respectively. For quantitation, regions of interest (ROIs) were drawn on the three slices selected at the level of the basal ganglia. Without scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.2 and 2.1, respectively. However, the ratios between basal ganglia and background were very similar for with and without attenuation correction. With scatter correction, the ratios of ROI average values between basal ganglia and background with attenuation correction and without attenuation correction were 2.69 and 2.64, respectively. These results indicate that the attenuation correction is necessary for the quantitation. When true ratios between basal ganglia and background were 6.58, 4.68, 1.86, the measured ratios with scatter and attenuation correction were 76%, 80%, 82% of their true ratios, respectively. The approximate 20% underestimation could be partially due to the effect of partial volume and reconstruction algorithm which we have not investigated in this study, and partially due to imperfect scatter and attenuation correction methods that we have applied in consideration of clinical applications.

  • PDF