• Title/Summary/Keyword: emission computed tomography

Search Result 392, Processing Time 0.032 seconds

Hepatic Pseudolymphoma Mimicking a Hypervascular Tumor: A Case Report (과혈관성 종양으로 오인된 간의 가성림프종: 증례보고)

  • Im, Bora;Jang, Suk Ki;Yeon, Jae Woo;Paik, So Ya;Park, Sang Jong;Kim, Hyuk Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.6
    • /
    • pp.348-353
    • /
    • 2018
  • Hepatic pseudolymphoma is a rare benign liver mass that is characterized by proliferation of non-neoplastic lymphocytes extranodally. To the best of our knowledge, only 46 cases have been reported in the English literature. We described the case of a 75-year-old woman with hepatic pseudolymphoma mimicking a hypervascular tumor. After the histological confirmation of the rectal neuroendocrine tumor, CT scan revealed a 1.0 cm-sized, poorly-defined and low-density nodule in the liver. On MRI, the hepatic nodule showed an arterial enhancement and a low-signal intensity on the hepatobiliary phase. On diffusion-weighted imaging, the hepatic nodule showed a high signal intensity on a high b-value. On fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, it revealed a high standardized uptake value nodule. The US showed the hypoechoic nodule and the US-guided biopsy confirmed the hepatic pseudolymphoma.

Correction of Single Photon Emission CT Image Distorted by Collimator Characteristic (시준기의 특성으로 인한 SPECT 왜곡 화상의 보정)

  • 백승권
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • SPECT technology is used for the reconstructed image in the field of industry noncontact measurement system. One of the distortion problems in reconstructed image quality is a collimator characterictic. The image distortion is caused by a geometrical structure of the collimator. This paper indicated a correction method to remove the image distortion by the structure of the collimator, and compared with the existing correction method. The correction. method removed the image distortion to use deconvolution of projection data with the shift-variant blurring function in the frequency domain. In this pater, I simulated with the collimator angle and distance between the detector and the center of object. and verified with expeimental data. The validity and limitation of correction method is studied for actual industrial applications.

  • PDF

Distinguishing between Thymic Epithelial Tumors and Benign Cysts via Computed Tomography

  • Sang Hyup Lee;Soon Ho Yoon;Ju Gang Nam;Hyung Jin Kim;Su Yeon Ahn;Hee Kyung Kim;Hyun Ju Lee;Hwan Hee Lee;Gi Jeong Cheon;Jin Mo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.671-682
    • /
    • 2019
  • Objective: To investigate whether computed tomography (CT) and fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) may be applied to distinguish thymic epithelial tumors (TETs) from benign cysts in the anterior mediastinum. Materials and Methods: We included 262 consecutive patients with pathologically proven TETs and benign cysts 5 cm or smaller who underwent preoperative CT scans. In addition to conventional morphological and ancillary CT findings, the relationship between the lesion and the adjacent mediastinal pleura was evaluated qualitatively and quantitatively. Mean lesion attenuation was measured on CT images. The maximum standardized uptake value (SUVmax) was obtained with FDG-PET scans in 40 patients. CT predictors for TETs were identified with multivariate logistic regression analysis. For validation, we assessed the diagnostic accuracy and inter-observer agreement between four radiologists in a size-matched set of 24 cysts and 24 TETs using a receiver operating characteristic curve before and after being informed of the study findings. Results: The multivariate analysis showed that post-contrast attenuation of 60 Hounsfield unit or higher (odds ratio [OR], 12.734; 95% confidence interval [CI], 2.506-64.705; p = 0.002) and the presence of protrusion from the mediastinal pleura (OR, 9.855; 95% CI, 1.749-55.535; p = 0.009) were the strongest CT predictors for TETs. SUVmax was significantly higher in TETs than in cysts (5.3 ± 2.4 vs. 1.1 ± 0.3; p < 0.001). After being informed of the study findings, the readers' area under the curve improved from 0.872-0.955 to 0.949-0.999 (p = 0.066-0.149). Inter-observer kappa values for protrusion were 0.630-0.941. Conclusion: Post-contrast CT attenuation, protrusion from the mediastinal pleura, and SUVmax were useful imaging features for distinguishing TETs from cysts in the anterior mediastinum.

CLINICAL STUDY OF POSITRON EMISSION TOMOGRAPHY WITH $[^{18}F]$-FLUORODEOXYGLUCOSE IN MAXILLOFACIAL TUMOR DIAGNOSIS (구강 악안면 영역의 암종 진단에 있어서 $[^{18}F]$-Fluorodeoxyglucose를 이용한 양전자방출 단층촬영의 임상적 연구)

  • Kim, Jae-Hwan;Kim, Kyung-Wook;Kim, Yong-Kack
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.462-469
    • /
    • 2000
  • Positron Emission Tomography(PET) is a new diagnostic method that can create functional images of the distribution of positron emitting radionuclides, which when administered intravenously in the body, makes possible anatomical and functional analysis by quantity of biochemical and physiological process. After genetic and biochemical changes in initial stage, malignant tumor undergoes functional changes before undergoing anatomical changes. So, early diagnosis of malignant tumors by functional analysis with PET can be achieved, replacing traditional anatomical analysis, such as computed tomography(CT) and magnetic resonance image(MRI), etc. Similarly, PET can identify malignant tumor without confusion with scar and fibrosis in follow up check. In the Korea Cancer Center Hospital(KCCH) from October 1997 to September 1999, clinical study was performed in 79 cases that underwent 89 times PET evaluation with [18F]-Fluorodeoxyglucose for diagnosis of oral and maxillofacial tumors, and the data was analysed by Bayesian $2{\times}2$ Classification Table. The results were as follows : Evaluation for initial diagnosis with FDG-PET (P<0.005) 1. Agreement rate or accuracy rate is 88.9%. 2. Sensitivity is 95.2%, and specificity 66.7%. 3. Positive predictive rate is 90.9%, and negative predictive rate 80.0%. 4. In consideration of tumor stage, diagnostic rate in less than stage II was 90% and in greater than stage III 100%. 5. In consideration of tumor size, diagnostic rate in less than T2 was 92.3% and in greater than T3 100%. After primary treatment, evaluation for follow up check with FDG-PET (P < 0.001) 1. Agreement rate or accuracy rate is 85.4%. 2. Sensitivity is 87.5%, and specificity 82.4%. 3. Positive predictive rate is 87.5%, and negative predictive rate 82.4%. 4. In 24 recurred cases, 6 had distant metastasis, and 5 of them were diagnosed with FDG-PET, resulting in diagnostic rate of FDG-PET of 83.3%. From the above results, Positron Emission Tomography with [18F]- Fluorodeoxyglucose appears to be more sensitive and accurate for detecting the presence of oral and maxillofacial tumors, and has various clinical applications such as early diagnosis of tumor in initial and follow up check and detection of distant metastasis.

  • PDF

Quantitative Feasibility Evaluation of 11C-Methionine Positron Emission Tomography Images in Gamma Knife Radiosurgery : Phantom-Based Study and Clinical Application

  • Lim, Sa-Hoe;Jung, Tae-Young;Jung, Shin;Kim, In-Young;Moon, Kyung-Sub;Kwon, Seong-Young;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.476-486
    • /
    • 2019
  • Objective : The functional information of $^{11}C$-methionine positron emission tomography (MET-PET) images can be applied for Gamma knife radiosurgery (GKR) and its image quality may affect defining the tumor. This study conducted the phantom-based evaluation for geometric accuracy and functional characteristic of diagnostic MET-PET image co-registered with stereotactic image in Leksell $GammaPlan^{(R)}$ (LGP) and also investigated clinical application of these images in metastatic brain tumors. Methods : Two types of cylindrical acrylic phantoms fabricated in-house were used for this study : the phantom with an array-shaped axial rod insert and the phantom with different sized tube indicators. The phantoms were mounted on the stereotactic frame and scanned using computed tomography (CT), magnetic resonance imaging (MRI), and PET system. Three-dimensional coordinate values on co-registered MET-PET images were compared with those on stereotactic CT image in LGP. MET uptake values of different sized indicators inside phantom were evaluated. We also evaluated the CT and MRI co-registered stereotactic MET-PET images with MR-enhancing volume and PET-metabolic tumor volume (MTV) in 14 metastatic brain tumors. Results : Imaging distortion of MET-PET was maintained stable at less than approximately 3% on mean value. There was no statistical difference in the geometric accuracy according to co-registered reference stereotactic images. In functional characteristic study for MET-PET image, the indicator on the lateral side of the phantom exhibited higher uptake than that on the medial side. This effect decreased as the size of the object increased. In 14 metastatic tumors, the median matching percentage between MR-enhancing volume and PET-MTV was 36.8% on PET/MR fusion images and 39.9% on PET/CT fusion images. Conclusion : The geometric accuracy of the diagnostic MET-PET co-registered with stereotactic MR in LGP is acceptable on phantom-based study. However, the MET-PET images could the limitations in providing exact stereotactic information in clinical study.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.

99mTc-3PRGD2 SPECT/CT Imaging for Diagnosing Lymph Node Metastasis of Primary Malignant Lung Tumors

  • Liming Xiao;Shupeng Yu;Weina Xu;Yishan Sun;Jun Xin
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1142-1150
    • /
    • 2023
  • Objective: To evaluate 99mtechnetium-three polyethylene glycol spacers-arginine-glycine-aspartic acid (99mTc-3PRGD2) single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging for diagnosing lymph node metastasis of primary malignant lung neoplasms. Materials and Methods: We prospectively enrolled 26 patients with primary malignant lung tumors who underwent 99mTc-3PRGD2 SPECT/CT and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT imaging. Both imaging methods were analyzed in qualitative (visual dichotomous and 5-point grades for lymph nodes and lung tumors, respectively) and semiquantitative (maximum tissue-to-background radioactive count) manners for the lymph nodes and lung tumors. The performance of the differentiation of lymph nodes with and without metastasis was determined at the per-lymph node station and per-patient levels using histopathological results as the reference standard. Results: Total 42 stations had metastatic lymph nodes and 136 stations had benign lymph nodes. The differences between metastatic and benign lymph nodes in the visual qualitative and semiquantitative analyses of 99mTc-3PRGD2 SPECT/CT and 18F-FDG PET/CT were statistically significant (all P < 0.001). The area under the receiver operating characteristic curve (AUC) in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT was 0.908 (95% confidence interval [CI], 0.851-0.966), and the sensitivity, specificity, positive predictive value, and negative predictive value were 0.86 (36/42), 0.88 (120/136), 0.69 (36/52), and 0.95 (120/126), respectively. Among the 26 patients (including two patients each with two lung tumors), 15 had pathologically confirmed lymph node metastasis. The difference between primary lung lesions in patients with and without lymph node metastasis was statistically significant only in the semi-quantitative analysis of 99mTc-3PRGD2 SPECT/CT (P = 0.007), with an AUC of 0.807 (95% CI, 0.641-0.974). Conclusion: 99mTc-3PRGD2 SPECT/CT imaging may notably perform in the direct diagnosis of lymph node metastasis of primary malignant lung tumors and indirectly predict the presence of lymph node metastasis through uptake in the primary lesions.

THE PET/CT IN THE DIAGNOSIS OF ORAL CANCER: CLINICAL CASES (구강암의 진단에 사용되어지는 PET/CT: 임상 증례)

  • Kim, Sung-Jin;Kim, Yong-Kack;Kim, Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.178-182
    • /
    • 2005
  • With the development of systemic diagnostic technique in cancer, the diagnostic methods of head and neck region are developing, also. Now, it is usually used computed tomography(CT), magnetic resornance image(MRI) in head and neck cancer and positron emission tomography(PET) is being increased in diagnostic use because of tumor specificity and accuracy. However, CT and MRI show the advantage of showing precise anatomical landmarks, but the disadvantage of these methods is much affecting by anatomical variations and changes. Otherwise, PET presents the imaging of physiologic and biochemical phenomenon and the disadvantage is the difficult differentiation of normal physiologic uptake, the lack of normal anatomical landmarks. PET/CT, the combination of clinical PET and CT imaging in a single unit is introduced recently, and it helps to get more accurate diagnostic interpretation and to improve in evaluating response to therapy, in management of patients with malignant tumors. So, we report the advantages of PET/CT in the diagnosis of oral cancer with review of literatures.

A Case of Metastatic Endobronchial Melanoma from an Unknown Primary Site

  • Lee, Jae-Hee;Lee, Shin-Yup;Cha, Seung-Ick;Ahn, Byeong-Cheol;Park, Jae-Yong;Jung, Tae-Hoon;Kim, Chang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.169-172
    • /
    • 2012
  • Melanoma can occur as a metastasis within subcutaneous tissue, lymph nodes, or viscera without a detectable primary tumor. Among patients with metastatic melanoma of unknown primary lesion, those with endobronchial metastasis are exceedingly rare. Herein we report a case of an endobronchial and pulmonary metastasis in a patient with melanoma originating from an unknown primary site. The patient without a previous history of melanoma presented with blood-tinged sputum. Fiberoptic bronchoscopy revealed a black polypoid tumor obstructing the posterior basal segmental bronchus of the right lower lobe. A final diagnosis of the malignant melanoma was made based on an immunohistochemical study of the bronchoscopic biopsy specimen. Skin, ophthalmic, oral, and nasal examinations failed to identify occult primary lesions. Subsequent evaluation including positron emission tomography/computed tomography scans did not uncover any abnormalities other than the metastatic pulmonary melanoma. We also describe the characteristic bronchoscopic features of melanoma.