• Title/Summary/Keyword: emergency braking system

Search Result 72, Processing Time 0.022 seconds

철도차량의 비상제동거리 해석 시스템

  • 진원혁;이성창;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.747-750
    • /
    • 1995
  • As railway trains run faster high performance braking system are necessary because more energy needs to be dissipated due to increased kinetic energy. In this work a portable computer based prediction system for emergency braking distance has been developed. The algorithm for the system is based on braking theory and empirical results of actual braking test. The computer is connected to the sensors to measure the velocity and the braking pressure in real train. It is expected that this system will be utilized to predict emergency braking distance during actual operation of the train

  • PDF

Proactive Autonomous Emergency Braking System for the Elderly Driver (고령운전자를 위한 자동긴급제동시스템 기술 개발)

  • Donghoon Shin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2024
  • This paper describes autonomous emergency braking systems (AEB) for elderly drivers designed to consider their driving characteristics. With aging, perception-reaction time, and decision-making time increase accordingly. Without being aware of these performance degradations, however, changes in driving patterns due to increased alertness while driving lead to vehicle crashes. Therefore, it is necessary to develop an autonomous emergency braking system by incorporating the characteristics of the elderly driver. In order to enhance the driver acceptance of older people, perception-reaction time, alertness, and ride comfort need to be considered for conventional autonomous emergency braking systems (C-AEB). Proactive AEB(P-AEB) algorithm has been proposed to reflect human factor of elderly driver above. The performance of the proposed algorithm has been evaluated through MATLAB simulink simulation studies. It has been shown from the computer simulations that the proposed P-AEB algorithm enhances the driver acceptance of older people by improving ride comfort while ensuring safety of vehicle.

Automotive Occupant Protection Technologies (차량용 탑승자 보호 기술)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.223-226
    • /
    • 2018
  • Recently, various safety technologies have been extensively developed to protect occupants from accidents. This paper surveys various automotive occupant protection technologies such as antilock braking system, traction control system, electronic brake distribution, electronic stability control, autonomous emergency braking, airbag, seatbelt pretensioner, and active headrest. Their operation principles and implementations are also explained.

Performance Evaluation Procedure for Advanced Emergency Braking System (자동비상제동 시스템의 안전성능평가)

  • Kim, Taewoo;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.25-31
    • /
    • 2015
  • This paper presents a performance evaluation procedure for advanced emergency braking (AEB) system. To guarantee the performance of AEB system, AEB test scenario should contains various driving conditions which can be occurred in real driving condition. Also, performances of each elements of AEB system, such as sensor, decision, human machine interface (HMI) and control, should be evaluated in various situations. For this, driving conditions, road types, environment, and elements of AEB system were introduced. Test scenario has been designed to represent the real driving condition and to evaluate the safety performance of AEB system in various situations. To confirm that the proposed AEB test scenario is realistic and physically meaningful, vehicle test have been conducted in two cases of proposed AEB test scenario: subject vehicle cut-out scenario and narrow street turn left scenario.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

Safety Performance Evaluation Scenarios of Autonomous Emergency Braking System for Cyclist Collision (자전거 탑승자 대상 자동비상제동장치의 성능평가 시나리오)

  • Kim, Taewoo;Yi, Kyongsu;Min, Kyongchan;Lee, EunDok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper present a performance evaluation scenarios to assess the safety performance of autonomous emergency braking (AEB) system for cyclist collision. To guarantee the safety performance of AEB for cyclist, AEB system should be tested in various scenarios which can be occurred in real driving condition. For this, real-traffic car-to-cyclist collision data are analyzed to classify the real traffic collision scenarios. Using this information, typical car-to-cyclist collision scenarios are selected. Also, in order to develop the detail features of these collision scenarios, several accident cases related with these scenarios are explained. Based on these information, test scenarios which can describe the car-to-cyclist collisions occurred in Korea are proposed. For practicality and feasibility of the test scenarios, proposed scenarios should be designed to assess the safety performance of AEB system effectively. For this, some test scenarios are combined or removed based on the consideration about the effectiveness of each scenario to the assessment of the performance of AEB system. To confirm that the proposed test scenarios are realistic and physically meaningful, simulation is conducted using simple AEB system in proposed test scenarios.

Development of Advanced Emergency Braking Algorithm for the enhanced longitudinal safety (종방향 안전도 향상을 위한 자동비상제동 알고리즘 개발)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents a development of the Advanced Emergency Braking (AEB) Algorithm for passenger vehicles. The AEB is the system to slow the vehicle and mitigate the severity of an impact when a rear end collision probability is increased. To mitigate a rear end collision, the AEB comprises of a millimeter wave radar sensor, CCD camera and vehicle parameters of which are processed to judge the likelihood of a collision occurring. The main controller of the AEB algorithm is composed of the two control stage: upper and lower level controller. By using the collected obstacle information, the upper level controller of the main controller decides the control mode based not only on parametric division, but also on physical collision capability. The lower level controller determines warning level and braking level to maintain the longitudinal safety. To decide the braking level, Last Ponit To Brake and Steer (LPTB/LPTS) are compared with current driving statues. To demonstrate the control performance of the proposed AEBS algorithm's, closed-loop simulation of the AEBS was conducted by using the Matlab simlink and CarSim software.

Probabilistic Braking Performance Analysis for Train Control System (열차제어시스템을 위한 확률적 제동성능분석)

  • Choi, Don Bum
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.319-326
    • /
    • 2018
  • The safety interval to prevent collision between trains in a train control system is based on the braking distance according to the emergency braking of the train. The evaluation of the braking performance is based on the longitudinal train dynamics or the commissioning test in the test track, but since the conditions such as the weakening of the adhesion coefficient between the wheel and rail can not all be considered, these conventional methods are not sufficient to design of the train control systems. Therefore, in this study, the Monte Carlo Method (MCM) which can consider various environments is used to analyze braking performance and limitations. The braking model is based on the air braking used in the emergency braking and is modeled to take into account the braking pressure, efficiency, friction coefficient, adhesion condition, and vehicle mass distribution. It is confirmed that braking performance can be improved by controlling the quality of braking device. In addition, the change of the braking performance was confirmed according to the vehicle constituting the train. The results of this study are expected to be used as basic information for designing safety clearance for the train control systems and as a basis for improving the braking performance of railway vehicles.

A Study on the ECU and Control Algorithm of ABS for a Commercial Vehicle

  • Lee, Ki-Chang;Kim, Mun-Sub;Jeon, Jeong-Woo;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.1-166
    • /
    • 2001
  • Anti-lock Braking System(ABS) is a device which prevents the wheels form locked up under emergency braking of a vehicle. So it helps the vehicle to maintain the steerability and shortens the braking distance by maintaining optimal frictional force during braking since the tire road slip is controlled in acceptable range. Recently, ABS is accepted as a standard equipment in vehicles, especially in commercial vehicles(bus and trucks). Commercial vehicles don´t use hydraulic lines but use pneumatic lines for braking system mostly. In this paper, ECU(Electronic Control Unit) for the anti-lock braking system of a commercial vehicle which is equipped with a full-air brake system and its control algorithms are presented. In this algorithm wheel speed acceleration flags and wheel slip flags are defined ...

  • PDF