• 제목/요약/키워드: embedded steel column

검색결과 44건 처리시간 0.017초

SRC 합성교각의 비탄성 거동 (Inelastic Behavior of the SRC Column)

  • 정인근;민진;심창수;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

유닛 모듈러 기둥 매입형 기초 접합부에 대한 실험 연구 (Test Result on Embedded Steel Column-to-Foundation Connection for Modular Unit Structural System)

  • 이상섭;배규웅;박금성;홍성엽
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.537-547
    • /
    • 2014
  • 골조 유닛 모듈러 구조 형식은 기 제작된 유닛 구조물을 적층하여 건물을 보다 간편히 건설을 할 수 있어 중, 고층 건물에 적용이 확대되고 있다. 이러한 유닛 모듈러 구조 형식은 외력에 의하여 발생하는 축력과 휨모멘트를 지반에 잘 전달시켜야 함으로 각각의 유닛구조물은 기초와 적절히 연결되어야 한다. 본 연구에서는 새로운 형태의 매입형 유닛-기초 접합부를 제안하였으며, 제안된 접합부의 성능을 일련의 실험 연구를 통하여 평가하였다. 총 5개의 실물 크기의 실험체를 제작하여 실험을 수행하였으며, 매입 길이와 엔드 플레이트와 같은 제안된 유닛-기초 접합부의 휨거동에 영향을 미칠 수 있는 인자들의 영향을 살펴보았다. 실험결과, 모든 실험체에서 강성은 최소한 반강접의 강성을 상회하는 것으로 나타났으며, 기둥의 매입길이는 본 연구에서 수행한 실험체에서 약 200mm가 적절한 것으로 파악되었다.

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능 (Seismic Performance of Column-Footing Connection of Modular Pier using CFT)

  • 김지영;김기도;마향욱;정철헌
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.73-85
    • /
    • 2014
  • CFT 기둥은 시공이 간단하고 경제적이며 구조성능이 우수한 현장타설 매입형 연결 형식이다. 본 연구에서는 모듈러 교각에 적용되는 CFT 기둥-기초 연결부 형식을 제안하고, 실험을 통하여 구조성능을 평가하였다. 기둥-기초 연결부의 구조성능을 평가하기 위해서 기초부 콘크리트에 매입되는 CFT 기둥의 매입깊이를 변수로 총 4개의 실험체를 제작하여 실험을 수행하였다. 준정적 실험결과, 매입깊이가 0.6D인 실험체에서는 낮은 하중단계에서 기초부의 콘파괴로 인하여 상대적으로 낮은 연성능력을 보였다. 그러나 매입깊이가 0.9D 이상인 실험체에서는 기초부의 콘파괴가 방지되고 CFT 기둥 하단부에서 전형적인 휨파괴 거동을 보이며 높은 연성능력을 발휘하였다. 하중-변위 이력곡선, 변위 연성도 및 에너지 소산능력 등을 분석한 결과, 제안된 CFT 기둥-기초 연결부의 매입깊이는 0.9D~1.2D 수준이 내진성능을 발휘하는 합리적인 수준인 것으로 평가되었다.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

SRC 기둥에 대한 정적실험 (Static Tests on SRC Columns)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF

내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가 (Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame)

  • 김선웅;이경구
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선 (Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP)

  • 하기주;신종학;강현욱
    • 콘크리트학회논문집
    • /
    • 제23권3호
    • /
    • pp.385-392
    • /
    • 2011
  • 이 연구에서는 기존 철근콘크리트 건물의 보-기둥 접합부 및 내진 성능의 개선을 위해 보-기둥 접합부 영역을 기존의 강판 및 FRP보강재(탄소섬유 쉬트, 매입형 탄소섬유봉)를 사용하여 보강한 후 내진 성능을 평가 하였다. 총 6개의 실험체를 제작하고 실험을 수행하여 내진 성능을 평가하였으며, 이 연구의 실험 결과를 근거로 다음과 같은 결론을 얻었다. 기존 철근콘크리트 보-기둥 접합부의 접합부 영역(LBCJ 시리즈)를 보강한 결과 초기 재하시 접합부 영역의 균열 억제 효과와 재하 전 과정을 통하여 보강재의 구속 효과로 인하여 균열 억제 효과가 커서 안정적인 파괴 형태 및 내력 향상 효과를 나타내었다. 기존 철근콘크리트 보-기둥 접합부의 내진 성능을 개선하기 위하여 철근콘크리트 보-기둥 접합부 FRP보강 기술 적용 실험체 LBCJ 시리즈는 표준실험체 LBCJC와 비교하여 최대 내력은 26~50% 증가하였다. 그리고 에너지 소산 능력은 변위 연성 4에서 13.0~14.4% 증가하였다.

Buckling analysis of embedded concrete columns armed with carbon nanotubes

  • Arani, Ali Jafarian;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.567-578
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.