• 제목/요약/키워드: embedded steel column

검색결과 44건 처리시간 0.021초

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Failure analysis of steel column-RC base connections under lateral cyclic loading

  • Demir, Serhat;Husem, Metin;Pul, Selim
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.459-469
    • /
    • 2014
  • One of the most important structural components of steel structures is the column-base connections which are obliged to transfer horizontal and vertical loads safely to the reinforced concrete (RC) or concrete base. The column-base connections of steel or composite steel structures can be organized both moment resistant and non-moment resistant leading to different connection styles. Some of these connection styles are ordinary bolded systems, socket systems and embedded systems. The structures are frequently exposed to cycling lateral loading effects causing fatal damages on connections like columns-to-beams or columns-to-base. In this paper, connection of steel column with RC base was investigated analytically and experimentally. In the experiments, bolded connections, socket and embedded connection systems are taken into consideration by applying cyclic lateral loads. Performance curves for each connection were obtained according to experimental and analytical studies conducted and inelastic behavior of connections was evaluated accordingly. The cyclic lateral performance of the connection style of embedding the steel column into the reinforced concrete base and strengthening of steel column in upper level of base connection was found to be higher and effective than other connection systems. Also, all relevant test results were discussed.

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • 제51권5호
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

합성 PC 보를 위한 전단 보강 계산 모형 기초 연구 (A Basic Study of the Calculation Model for Shear Connectors of Composite Precast Concrete Beams)

  • 임채연;이동훈;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2013
  • Green Frame is a column-beam system constructed by composite precast column and beam connected by embedded steel of their. From when the precast concrete beam of Green Frame is installed, until the concrete of slab and connection joint is cured, the self load of beam shall be supported by the embedded steel of it. Therefore, the concrete of beam could be separated from the embedded steel if the shear connector of beam of Green Frame is designed by the code on Structural standard. So, this study suggest an equation for the shear connection of composite precast concrete beams of Green Frame. The result of this study will be used as the main equation of the calculation model for shear connectors of composite precast concrete beams.

  • PDF

Static behavior of novel RCS through-column-type joint: Experimental and numerical study

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.111-126
    • /
    • 2019
  • This paper deals with experimental investigation and modeling of the static behavior of a novel RCS beam-column exterior joint. The studied joint detail is a through-column type in which an H steel profile totally embedded inside RC column is directly welded to the steel beam. The H steel profile was covered by two supplementary plates in the joint area in order to avoid the stirrups resisting shear in the joint area. Two full-scale through-column-type RCS joints were tested under static loading. The objectives of the tests were to examine the connection performance and to highlight the contribution of two supplementary plates on the shear resistance of the joint. A reliable nonlinear 3D finite element model was developed using ABAQUS software to predict the response and behavior of the studied RCS joint. An extensive parametric study was performed to investigate the influences of the stirrups, the encased profile length and supplementary plate length on the behavior of the studied RCS joint.

강재매입형 합성기둥의 합성작용에 관한 실험 (Experiments on the Composite Action of Steel Encased Composite Column)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.485-488
    • /
    • 2004
  • Steel encased composite columns have been used for buildings and piers of bridges. Since column section for pier is relatively larger than that of building columns, economical steel ratio need to be investigated for the required performance. Composite action between concrete and embedded steel sections can be obtained by bonding and friction. However, the behavior. of the column depends on the load introduction mechanism. Compression can be applied to concrete section, steel section and composite section. In this paper, experiments on shear strength of the steel encased composite column were performed to study the effect of confinement by transverse reinforcements, mechanical interlock by holes, and shear connectors. Shear strength obtained from the tests showed considerably higher than the design value. Confinement, mechanical interlock and stud connectors increased the shear strength and these values can be used effectively to obtain composite action of SRC columns.

  • PDF

합성 PC 부재의 철골 물량산출 알고리즘 기초연구 (Basic study of algorithm for steel quantity analysis of composite precast concrete members)

  • 김경주;임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.96-97
    • /
    • 2014
  • Green Frame is a column-beam structure built by steel frame joints embedded in the columns and beams. Here, the steel frame embedded in the columns and beams is not a standardized product, instead it needs to be order-produced. The quantity for each steel frame size should be calculated to estimate the quantity of steel frames to be manufactured. However, it is highly time-consuming and requires a lot of effort in calculating the quantity of steel frames, for there are a wide range of steel frame types that are embedded in the columns and beams. To solve this problem, the study proposes an algorithm for calculation of the amount of steel frames with ease and promptness. When a program is developed using the algorithm proposed in the study in connection to the information on precast concrete members prepared in the design phase, it is anticipated that the manpower required as well as the manufacturing time will be decreased.

  • PDF