• 제목/요약/키워드: embedded reviews

검색결과 32건 처리시간 0.024초

Promotion or Prevention? The Moderating Effect of Embedded External Reviews on Consumer Evaluations

  • Ziqiong Zhang;Le Wang;Shuchen Qiao;Zili Zhang
    • Journal of Smart Tourism
    • /
    • 제3권3호
    • /
    • pp.5-15
    • /
    • 2023
  • Given the increasing information overload among users of online review websites, understanding the manner in which cognitive costs are reduced and efficient information is made reliable has become increasingly important. This study targets a unique consumer review design and explores how reviews from an external peer-to-peer site embedded in an online travel agency (OTA) website influence subsequent evaluation behaviors. The empirical results indicate that (1) embedded external reviews with a high average valence tend to strengthen the influence of the positive evaluation ratio while diminishing the effect of the review volume, and (2) embedded external reviews with a large variance strengthen the positive effect of the review volume while weakening the effect of the positive evaluation ratio on subsequent positive evaluations. The findings provide practical insights for consumers and online platforms.

Investigating the Impact of Discrete Emotions Using Transfer Learning Models for Emotion Analysis: A Case Study of TripAdvisor Reviews

  • Dahee Lee;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제34권2호
    • /
    • pp.372-399
    • /
    • 2024
  • Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.

FBG 센서의 온도와 변형률 동시 측정기법 기술 분석 (Technical review of discrimination method between strain and temperature on the FBG sensor)

  • 윤혁진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.574-583
    • /
    • 2008
  • FBG(Fiber Bragg grating)s have shown a great potential for sensing applications, and are easily embedded in materials with a negligible impact on the mechanical properties of the host. However, the use of FBG sensors is limited by their simultaneous dependence on strain and temperature, thus only one parameter can be determined from a single grating. This paper reviews various methods to discriminate between strain and temperature effects. To overcome this cross sensitivity using only embedded optical fibers, a number of techniques have been proposed, most of them relying on the deconvolution of two simultaneous measurements.

  • PDF

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • 제33권2호
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 - (Multi-Topic Sentiment Analysis using LDA for Online Review)

  • 홍태호;니우한잉;임강;박지영
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권1호
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.

인공지능 속성에 대한 고객 태도 변화: AI 스피커 고객 리뷰 분석을 통한 탐색적 연구 (Customer Attitude to Artificial Intelligence Features: Exploratory Study on Customer Reviews of AI Speakers)

  • 이홍주
    • 지식경영연구
    • /
    • 제20권2호
    • /
    • pp.25-42
    • /
    • 2019
  • AI speakers which are wireless speakers with smart features have released from many manufacturers and adopted by many customers. Though smart features including voice recognition, controlling connected devices and providing information are embedded in many mobile phones, AI speakers are sitting in home and has a role of the central en-tertainment and information provider. Many surveys have investigated the important factors to adopt AI speakers and influ-encing factors on satisfaction. Though most surveys on AI speakers are cross sectional, we can track customer attitude toward AI speakers longitudinally by analyzing customer reviews on AI speakers. However, there is not much research on the change of customer attitude toward AI speaker. Therefore, in this study, we try to grasp how the attitude of AI speaker changes with time by applying text mining-based analysis. We collected the customer reviews on Amazon Echo which has the highest share of AI speakers in the global market from Amazon.com. Since Amazon Echo already have two generations, we can analyze the characteristics of reviews and compare the attitude ac-cording to the adoption time. We identified all sub topics of customer reviews and specified the topics for smart features. And we analyzed how the share of topics varied with time and analyzed diverse meta data for comparisons. The proportions of the topics for general satisfaction and satisfaction on music were increasing while the proportions of the topics for music quality, speakers and wireless speakers were decreasing over time. Though the proportions of topics for smart fea-tures were similar according to time, the share of the topics in positive reviews and importance metrics were reduced in the 2nd generation of Amazon Echo. Even though smart features were mentioned similarly in the reviews, the influential effect on satisfac-tion were reduced over time and especially in the 2nd generation of Amazon Echo.

소셜 미디어 앱 리뷰에서의 감성 분석 연구: 인스타그램 중심으로 (Research on Sentiment Analysis in Social Media App Reviews: Focusing on Instagram)

  • 이문기;우위항
    • 감성과학
    • /
    • 제27권1호
    • /
    • pp.69-80
    • /
    • 2024
  • 본 연구는 Google Play에서 수집된 Instagram 사용자 리뷰에 대한 심층 분석을 통해, 이 연구는 애플리케이션의 성능과 사용자 만족도에 대한 중요한 통찰력을 얻고자 한다. 텍스트 마이닝과 감성 분석 기술을 활용하여 사용자 리뷰에 담긴 감성과 의견을 체계적으로 파악하며, 이를 통해 앱의 개선점과 사용자 경험을 깊이 이해하려고 한다. 인스타그램 리뷰가 사용자들의 다양한 경험을 어떻게 반영하는지, 그리고 앱의 장단점을 어떻게 드러내는지를 분석한다. 이를 위해 나이브 베이즈 알고리즘을 사용한 감성 분석을 수행하며, 이 결과는 인스타그램 서비스 개선에 도움이 될 것으로 기대된다. 연구는 또한 개발자들이 사용자 피드백을 더 잘 이해하고 활용하는 데 도움을 주며, 결국 사용자 만족도를 향상시키는 데 기여할 것으로 예상된다. 이 연구는 소셜 미디어 사용 패턴과 사용자 의견의 복잡한 관계를 탐색하고, 이를 통해 더 나은 사용자 경험을 제공하는 방안을 모색한다.

초저지연 제어를 위한 CPS 아키텍처 설계 (Design of CPS Architecture for Ultra Low Latency Control)

  • 강성주;전재호;이준희;하수정;전인걸
    • 대한임베디드공학회논문지
    • /
    • 제14권5호
    • /
    • pp.227-237
    • /
    • 2019
  • Ultra-low latency control is one of the characteristics of 5G cellular network services, which means that the control loop is handled in milliseconds. To achieve this, it is necessary to identify time delay factors that occur in all components related to CPS control loop, including new 5G cellular network elements such as MEC, and to optimize CPS control loop in real time. In this paper, a novel CPS architecture for ultra-low latency control of CPS is designed. We first define the ultra-low latency characteristics of CPS and the CPS concept model, and then propose the design of the control loop performance monitor (CLPM) to manage the timing information of CPS control loop. Finally, a case study of MEC-based implementation of ultra-low latency CPS reviews the feasibility of future applications.

설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형 (The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network)

  • 김은미;야오즈옌;홍태호
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.309-323
    • /
    • 2023
  • 온라인 리뷰의 역할이 중요해짐에 따라 유용한 리뷰를 선별하기 위해 많은 연구들이 이루어져 왔다. 유용한 리뷰는 고객들이 유용하다고 인지하는 리뷰이며, 평점, 리뷰길이, 리뷰내용 등에 영향을 받는 것으로 많은 연구에서 검증되었다. 유용한 리뷰는 소비자들의 투표에 의한 '좋아요' 수에 의해 결정되며 유용성 투표가 많을수록 소비자의 구매의사결정에 중요한 영향을 미치는 것으로 간주된다. 그러나 최근에 작성되어 많은 고객들에게 노출되지 않은 리뷰는 상대적으로 '좋아요' 수가 적을 수 있으며, 투표에 응하지 않아 '좋아요' 수가 없을 수도 있다. 따라서 유용한 리뷰를 판단하기 위해 '좋아요' 수에 의존하기 보다는 리뷰 내용을 기반으로 유용한 리뷰를 분류하고자 한다. 리뷰의 텍스트는 리뷰 유용성에 가장 큰 영향을 미치는 요인으로, 토픽 모델링, 감정분석 등 텍스트 마이닝 기법을 적용하여 리뷰 텍스트에 포함된 콘텐츠와 감정의 영향을 다양하게 분석하고 있다. 본 연구에서는 글로벌 영화정보 사이트인 IMDb의 영화리뷰를 활용하여 리뷰 콘텐츠 기반의 리뷰 유용성 예측모형을 제안한다. 설명가능한 그래프 신경망인 GNN(Graph Neural Network)을 적용하여 리뷰 유용성 예측모형을 구축하고, 설명가능한 인공지능을 통해 예측모형의 한계인 모형의 해석에 대한 문제를 해결한다. 설명가능한 그래프 신경망은 리뷰들 간의 연결관계도 확인할 수 있어 유용한 리뷰 또는 유용하지 않은 리뷰에 대해 보다 신뢰할 수 있는 정보를 제공할 수 있을 것이라 기대한다.

온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향 (Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews)

  • 박윤주;김경재
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.29-44
    • /
    • 2017
  • 인터넷 상거래에서, 소비자들은 기존에 제품을 구매한 다른 사용자들이 작성한 상품평에 많은 영향을 받는다. 그러나, 상품평이 점차 축적되어감에 따라, 소비자들이 방대한 상품평을 일일이 확인하는데 많은 시간과 노력이 소요되고, 또한 무성의하게 작성된 상품평들은 오히려 소비자들의 불편을 초래하기도 한다. 이에, 본 연구는 온라인 상품평의 유용성에 영향을 미치는 요인들을 분석하여, 소비자들에게 실제로 도움이 될 수 있는 상품평을 선별적으로 제공하는 예측모형을 도출하는 것을 목적으로 한다. 이를 위해, 텍스트마이닝 기법을 사용하여, 상품평에 포함되어있는 다양한 언어적, 심리적, 지각적 요소들을 추출하였으며, 이러한 요소들 중에서 상품평의 유용성에 영향을 미치는 결정요인이 무엇인지 파악하였다. 특히, 경험재인 의류군과 탐색재인 전자제품군에 대한 상품평의 특성 및 유용성 결정요인이 상이할 수 있음을 고려하여, 제품군별로 상품평의 특성을 비교하고, 각각의 결정요인을 도출하였다. 본 연구에는 아마존닷컴(Amazon.com)의 의류군 상품평 7,498건과 전자제품군 상품평 106,962건이 사용되었다. 또한, 언어분석 소프트웨어인 LIWC(Linguistic Inquiry and Word Count)를 활용하여 상품평에 포함된 특징들을 추출하였고, 이후, 데이터마이닝 소프트웨어인 RapidMiner를 사용하여, 회귀분석을 통한, 결정요인 분석을 수행하였다. 본 연구결과, 제품에 대한 리뷰어의 평가가 높고, 상품평에 포함된 전체 단어 수가 많으며, 상품평의 내용에 지각적 과정이 많이 포함되어 있는 반면, 부정적 감정은 적게 포함된 상품평들이 두 제품 모두에서 유용하다고 인식되는 것을 알 수 있었다. 그 외, 의류군의 경우, 비교급 표현이 많고, 전문성 지수는 낮으며, 한 문장에 포함된 단어 수가 적은 간결한 상품평이 유용하다고 인식되고 있었으며, 전자제품의 경우, 전문성 지수가 높고, 분석적이며, 진솔한 표현이 많고, 인지적 과정과 긍정적 감정(PosEmo)이 많이 포함된 상품평이 유용하게 인식되고 있었다. 이러한 연구결과는 향후, 소비자들이 효과적으로 유용한 상품평들을 확인하는데 도움이 될 것으로 기대된다.