Acknowledgement
This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2020S1A3A2A02093277).
References
- Ansari, S., and Gupta, S. (2021). Review manipulation: literature review, and future research agenda. Pacific Asia Journal of the Association for Information Systems, 13(1), 97-121. https://doi.org/10.17705/1pais.13104
- Aprilia, M. P. (2018). Instagram and buying decision processes of restaurant consumers. AJMC (Asian Journal of Media and Communication), 2(2), 13-18.
- Azarbonyad, H., Dehghani, M., Kenter, T., Marx, M., Kamps, J., and de Rijke, M. (2017). Hierarchical re-estimation of topic models for measuring topical diversity. In Advances in Information Retrieval (pp. 68-81). Cham: Springer International Publishing.
- Banerjee, S., and Chua, A. Y. K. (2014). A study of manipulative and authentic negative reviews. In Proceedings of the 8th International Conference on Ubiquitous Information Management and Communication (pp. 1-6). New York, NY, USA: Association for Computing Machinery.
- Barbado, R., Araque, O., and Iglesias, C. A. (2019). A framework for fake review detection in online consumer electronics retailers. Information Processing & Management, 56(4), 1234-1244. https://doi.org/10.1016/j.ipm.2019.03.002
- Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 993-1022.
- Boush, D. M., Friestad, M., and Wright, P. (2015). Deception in the marketplace: The psychology of deceptive persuasion and consumer self-protection, Routledge.
- Buller, D. B., and Burgoon, J. K. (1996). Interpersonal Deception Theory. Communication Theory, 6(3), 203-242. https://doi.org/10.1111/j.1468-2885.1996.tb00127.x
- Buller, D. B., Burgoon, J. K., Buslig, A., and Roiger, J. (1996). Testing interpersonal deception theory: The language of interpersonal deception. Communication Theory, 6(3), 268-288. https://doi.org/10.1111/j.1468-2885.1996.tb00129.x
- Burgoon, J. K., and Qin, T. (2006). The dynamic nature of deceptive verbal communication. Journal of Language and Social Psychology, 25(1), 76-96. https://doi.org/10.1177/0261927X05284482
- Chen, Dhanasobhon, S., and Smith, M. D. (2008). All reviews are not created equal: The disaggregate impact of reviews and reviewers at Amazon.com (SSRN Scholarly Paper No. ID 918083). Rochester, NY: Social Science Research Network.
- Chernyaeva, O., Kim, E., and Hong, T. (2021). The Detection of well-known and unknown Brands' products with manipulated reviews using sentiment analysis. Asia Pacific Journal of Information Systems, 31(4), 472-490. https://doi.org/10.14329/apjis.2021.31.4.472
- Chevalier, J. A., and Mayzlin, D. (2006). The effect of word of mouth on sales: online book reviews. Journal of Marketing Research, 43(3), 345-354. https://doi.org/10.1509/jmkr.43.3.345
- Cho, M., Hwang, D., and Jeon, S. (2022). The impact of topic distribution on review sentiment: A comparative study between South Korea and the U.S.. Asia Pacific Journal of Information Systems, 32(3), 514-536. https://doi.org/10.14329/apjis.2022.32.3.514
- Choi, A. A., Cho, D., Yim, D., Moon, J. Y., and Oh, W. (2019). When seeing helps believing: The interactive effects of previews and reviews on e-book purchases. Information Systems Research, 30(4), 1164-1183. https://doi.org/10.1287/isre.2019.0857
- Clemons, E. K., Gao, G. G., and Hitt, L. M. (2006). When online reviews meet Hyperdifferentiation: A study of the craft beer industry. Journal of Management Information Systems, 23(2), 149-171. https://doi.org/10.1109/HICSS.2006.534
- Comegys, C., Hannula, M., and Vaisanen, J. (2006). Longitudinal comparison of finnish and US online shopping behaviour among university students: The five-stage buying decision process. Journal of Targeting, Measurement and Analysis for Marketing, 14(4), 336-356. https://doi.org/10.1057/palgrave.jt.5740193
- Dabholkar, P. A. (2006). Factors influencing consumer choice of a 'rating web site': An experimental investigation of an online interactive decision aid. Journal of Marketing Theory and Practice, 14(4), 259-273. https://doi.org/10.2753/MTP1069-6679140401
- Debortoli, S., Muller, O., Junglas, I., and Brocke, J. vom. (2016). Text mining for information systems researchers: An annotated topic modeling tutorial. Communications of the Association for Information Systems, 39(7), 110-135. https://doi.org/10.17705/1CAIS.03907
- DePaulo, B. M., Lindsay, J. J., Malone, B. E., Muhlenbruck, L., Charlton, K., and Cooper, H. (2003). Cues to deception. Psychological Bulletin, 129(1), 74-118. https://doi.org/10.1037/0033-2909.129.1.74
- Dong, L., Ji, S., Zhang, C., Zhang, Q., Chiu, DicksonK. W., Qiu, L., and Li, D. (2018). An unsupervised topic-sentiment joint probabilistic model for detecting deceptive reviews. Expert Systems with Applications, 114, 210-223. https://doi.org/10.1016/j.eswa.2018.07.005
- Ekman, P. (2011). Ekman, P. (2009) Telling lies : clues to deceit in the marketplace, politics, and marriage. New York: Norton. American Journal of Clinical Hypnosis, 53(4), 287-288. https://doi.org/10.1080/00029157.2011.10404358
- Filieri, R. (2016). What makes an online consumer review trustworthy?. Annals of Tourism Research, 58, 46-64. https://doi.org/10.1016/j.annals.2015.12.019
- Filieri, R., Raguseo, E., and Vitari, C. (2018). When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type. Computers in Human Behavior, 88, 134-142. https://doi.org/10.1016/j.chb.2018.05.042
- Forman, C., Ghose, A., and Wiesenfeld, B. (2008). Examining the relationship between reviews and sales: The role of reviewer identity disclosure in electronic markets. Information Systems Research, 19(3), 291-313. https://doi.org/10.1287/isre.1080.0193
- Fuller, C. M., Biros, D. P., Burgoon, J., and Nunamaker, J. (2013). An examination and validation of linguistic constructs for studying high-stakes deception. Group Decision and Negotiation, 22(1), 117-134. https://doi.org/10.1007/s10726-012-9300-z
- Ghasemaghaei, M., Eslami, S. P., Deal, K., and Hassanein, K. (2018). Reviews' length and sentiment as correlates of online reviews' ratings. Internet Research, 28(3), 544-563. https://doi.org/10.1108/IntR-12-2016-0394
- Grice, P. (1989). Studies in the way of words. Harvard University Press.
- Harris. (1954). Distributional structure. Word, 10(2-3), 146-162. https://doi.org/10.1080/00437956.1954.11659520
- Harris, C. G. (2012). Detecting deceptive opinion spam using human computation. In AAAI Conference on Artificial Intelligence. Vol. Technical Report WS-12-08, AAAI, pp. 87-93.
- Hu, N., Bose, I., Koh, N. S., and Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674-684. https://doi.org/10.1016/j.dss.2011.11.002
- Huang, A. H., Chen, K., Yen, D. C., and Tran, T. P. (2015). A study of factors that contribute to online review helpfulness. Computers in Human Behavior, 48: 17-27. https://doi.org/10.1016/j.chb.2015.01.010
- Hutto, C., and Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media text. Proceedings of the International AAAI Conference on Web and Social Media, 8(1), 216-225.
- Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., and Zhao, L. (2019). Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a surve. Multimedia Tools and Applications, 78(11), 15169-15211. https://doi.org/10.1007/s11042-018-6894-4
- Jiang, Z., and Benbasat, I. (2004). Virtual product experience: Effects of visual and functional control of products on perceived diagnosticity and flow in electronic shopping. Journal of Management Information Systems, 21(3), 111-147.
- Jindal, N., and Liu, B. (2008). Opinion spam and analysis. In 2008 International Conference on Web Search and Data Mining, pp. 219-230.
- Kohli, R., Devaraj, S., and Mahmood, M. A. (2014). Understanding determinants of online consumer satisfaction: A decision process perspective. Journal of Management Information Systems, 21(1), 115-136. https://doi.org/10.1080/07421222.2004.11045796
- Kotler, P. (2000). Marketing Management Millenium Edition, Tenth Edition, Vol. Tenth Edition, Prentice-Hall.
- Kumar, N., Venugopal, D., Qiu, L., and Kumar, S. (2018). Detecting review manipulation on online platforms with hierarchical supervised learning. Journal of Management Information Systems, 35(1), 350-380. https://doi.org/10.1080/07421222.2018.1440758
- Kwon, H.-J., Ban, H.-J., Jun, J.-K., and Kim, H.-S. (2021). Topic modeling and sentiment analysis of online review for airlines. Information, 12(2), 78.
- Lappas, T. (2012). Fake reviews: The malicious perspective. In Natural Language Processing and Information Systems. Presented at the International Conference on Application of Natural Language to Information Systems. Springer, Berlin, Heidelberg, pp. 23-34.
- Lee, J., and Lee, H. J. (2016). Your expectation matters when you read online consumer reviews: The review extremity and the escalated confirmation effect. Asia Pacific Journal of Information Systems, 26(3), 449-476. https://doi.org/10.5859/KAIS.2016.25.2.173
- Li, L., Fu, L., and Zhang, W. (2022). Impact of text diversity on review helpfulness: A topic modeling approach. Interdisciplinary Journal of Information, Knowledge, and Management, 17, 87-100. https://doi.org/10.28945/4922
- Lim, J., and Lee, H. C. (2020). Comparisons of service quality perceptions between full service carriers and low cost carriers in airline travel. Current Issues in Tourism, 23(10), 1261-1276. https://doi.org/10.1080/13683500.2019.1604638
- Liu, Lee, D., and Srinivasan, K. (2019). Large-scale cross-category analysis of consumer review content on sales conversion leveraging deep learning. Journal of Marketing Research, 56(6), 918-943. https://doi.org/10.1177/0022243719866690
- Liu and Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140-151. https://doi.org/10.1016/j.tourman.2014.09.020
- Luca, M. (2016). Reviews, reputation, and revenue: the case of Yelp.com (SSRN Scholarly Paper No. ID 1928601). Rochester, NY: Social Science Research Network, p. 41 pages.
- Martinez-Torres, M. R., and Toral, S. L. (2019). A machine learning approach for the identification of the deceptive reviews in the hospitality sector using unique attributes and sentiment orientation, Tourism Management 75: 393-403. https://doi.org/10.1016/j.tourman.2019.06.003
- McCornack. (1992). Information manipulation theory. Communication Monographs, 59(1), 1-16. https://doi.org/10.1080/03637759209376245
- Metts, S. (2016). An exploratory investigation of deception in close relationships. Journal of Social and Personal Relationships, 6(2), 159-197. https://doi.org/10.1177/026540758900600202
- Mudambi, S., and Schuff, D. (2010). What makes a helpful online review? A study of customer reviews on Amazon.com. MIS Quarterly, 34(1), 185-200. https://doi.org/10.2307/20721420
- Ong, T., Mannino, M., and Gregg, D. (2014). Linguistic characteristics of shill reviews. Electronic Commerce Research and Applications, 13(2), 69-78. https://doi.org/10.1016/j.elerap.2013.10.002
- Ott, M., Cardie, C., and Hancock, J. (2012). Estimating the prevalence of deception in online review communities. In Proceedings of the 21st International Conference on World Wide Web. New York, NY, USA: Association for Computing Machinery, pp. 201-210.
- Pan, Y., and Zhang, J. Q. (2011). Born unequal: A study of the helpfulness of user-generated product reviews. Journal of Retailing, 87(4), 598-612. https://doi.org/10.1016/j.jretai.2011.05.002
- Peng, L., Cui, G., Zhuang, M., and Li, C. (2016). Consumer perceptions of online review deceptions: an empirical study in China. Journal of Consumer Marketing, 33(4), 269-280. https://doi.org/10.1108/JCM-01-2015-1281
- Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001). Linguistic inquiry and word count: LIWC 2001, Mahway: Lawrence Erlbaum Associates, 71(2001), 2001.
- Rayana, S., and Akoglu, L. (2016). Collective opinion spam detection using active inference. In Proceedings of the 2016 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied Mathematics, pp. 630-638.
- Rucker, D. D., Tormala, Z. L., Petty, R. E., and Brinol, P. (2014). Consumer conviction and commitment: An appraisal based framework for attitude certainty. Journal of Consumer Psycholog, 24(1), 119-136. https://doi.org/10.1016/j.jcps.2013.07.001
- Sarkadi, S. (2018). Deception, International Joint Conference on Artificial Intelligence. 5781-5782.
- Shan, G., Zhou, L., and Zhang, D. (2021). From conflicts and confusion to doubts: Examining review inconsistency for fake review detection. Decision Support Systems, 144, 1-11. https://doi.org/10.1016/j.dss.2021.113513
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Shin, S., Du, Q., Ma, Y., Fan, W., and Xiang, Z. (2021). Moderating effects of rating on text and helpfulness in online hotel reviews: an analytical approach. Journal of Hospitality Marketing & Management, 30(2), 159-177. https://doi.org/10.1080/19368623.2020.1778596
- Si, L., and Callan, J. (2001). A statistical model for scientific readability. In Proceedings of the Tenth International Conference on Information and Knowledge Management. New York, NY, USA: Association for Computing Machinery, pp. 574-576.
- Son, J., Negahban, A., and Chiang, D. (2019). Topic diversity of online consumer reviews and its effect on review helpfulness. AMCIS 2019 Proceedings. 6.
- Sutherland, I., Sim, Y., Lee, S. K., Byun, J., and Kiatkawsin, K. (2020). Topic modeling of online accommodation reviews via latent dirichlet allocation. Sustainability, 12(5), 1821-1836. https://doi.org/10.3390/su12051821
- Turner, R. E., Edgley, C., and Olmstead, G. (1975). Information control in conversations: Honesty is not always the best policy. The Kansas Journal of Sociology, 11(1), 69-89. https://doi.org/10.17161/STR.1808.6098
- Turney, P. D., and Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141-188. https://doi.org/10.1613/jair.2934
- Vidanagama, D. U., Silva, T. P., and Karunananda, A. S. (2020). Deceptive consumer review detection: a survey. Artificial Intelligence Review, 53(2), 1323-1352. https://doi.org/10.1007/s10462-019-09697-5
- Wang, F., and Karimi, S. (2019). This product works well (for me), The impact of first-person singular pronouns on online review helpfulness. Journal of Business Research, 104, 283-294. https://doi.org/10.1016/j.jbusres.2019.07.028
- Wang, Miller, M. J., Schmitt, M. R., and Wen, F. K. (2013). Assessing readability formula differences with written health information materials: Application, results, and recommendations. Research in Social and Administrative Pharmacy, 9(5), 503-516. https://doi.org/10.1016/j.sapharm.2012.05.009
- Wu, C., Che, H., Chan, T. Y., and Lu, X. (2015). The economic value of online reviews. Marketing Science, 34(5), 739-754. https://doi.org/10.1287/mksc.2015.0926
- Yoo, K.-H., and Gretzel, U. (2009). Comparison of Deceptive and Truthful Travel Reviews, pp. 37-47.
- Zhang, W., Du, Y., Yoshida, T., and Wang, Q. (2018). DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network. Information Processing & Management, 54(4), 576-592. https://doi.org/10.1016/j.ipm.2018.03.007
- Zhong, Q., Liang, S., Cui, L., Chan, H. K., and Qiu, Y. (2018). Using online reviews to explore consumer purchasing behaviour in different cultural settings. Kybernetes, 48(6), 1242-1263. https://doi.org/10.1108/K-03-2018-0117
- Zhou, L., Twitchell, D. P., Qin, T., Burgoon, J. K., and Nunamaker, J. F. (2003). An exploratory study into deception detection in text-based computer-mediated communication, In 36th Annual Hawaii International Conference on System Sciences, 2003. p. 10.
- Zhou, Lina, Burgoon, J. K., Nunamaker, J. F., and Twitchell, D. (2004). Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decision and Negotiation, 13(1), 81-106. https://doi.org/10.1023/B:GRUP.0000011944.62889.6f