• Title/Summary/Keyword: embedded reinforcement

Search Result 185, Processing Time 0.024 seconds

Prediction of Corrosion Threshold Reached at Steel Reinforcement Embedded in Latex Modified Concrete with Mix Proportion Factor (배합변수에 따른 라텍스 개질 콘크리트 내에 정착된 보강철근의 부식개시시기 예측)

  • Park, Seung-Ki;Won, Jong-Pil;Park, Chan-Gi;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.6
    • /
    • pp.49-60
    • /
    • 2008
  • This study were predicted the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC) which were applied the agricultural hydraulic concrete structures. Accelerated testing was accomplished to the evaluate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, the average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC were effected on the mix proportion factor including cement contents, latex content, and water-cement ratio. Especially, the average chloride diffusion coefficient, the corrosion threshold reached at reinforcement in LMC were affected by the all mix proportion factor.

A DASH System Using the A3C-based Deep Reinforcement Learning (A3C 기반의 강화학습을 사용한 DASH 시스템)

  • Choi, Minje;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

Evaluating the Influence of Embedded Reinforcement on Concrete Resistivity Measurements (콘크리트 비저항 측정에서 주변 철근의 영향에 대한 실험적 연구)

  • Lim, Young-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.519-526
    • /
    • 2023
  • This research endeavors to explore the nuances in apparent resistivity readings in concrete specimens due to the proximity of embedded reinforcement. To systematically gauge this, concrete samples incorporating singular and paired rebars were meticulously crafted. These rebars were strategically positioned at intervals of 0.03m, 0.04m, and 0.05m from each specimen's midpoint. Subsequent resistivity assessments were conducted at 0.01m increments up to the predetermined rebar location for each sample. A consistent observation was the nadir in apparent resistivity manifesting at the rebar's epicenter. Notably, dual-rebar configurations registered lower resistivity values at this central juncture compared to their single-rebar counterparts. This metric underscores the palpable impact of surrounding reinforcement on resistivity readings. Further, as the spatial separation between rebars increased, the distinctness in their locational identification via resistivity became increasingly pronounced.

Behavior of Mechanical Anchorage of Bars Embedded in Concrete Blocks

  • You, Young-Chan;Park, Keun-Do;Kim, Keung-Hwan;Lee, Li-Hyung
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.86-91
    • /
    • 2002
  • This paper presents an experimental study to investigate the behavior of mechanical anchorage of reinforcing bars in concrete members. Three kinds of mechanical anchorage which are a kind of headed reinforcements are considered in this study. Total seven specimens were prepared to consider the effects of anchoring methods (Type A, Type B and Type C) and anchorage lengths of the reinforcing bars (14 $d_{b}$, 12 $d_{b}$, 9 $d_{b}$). Pullout tests conforming to ASTM were carried out to assess the effects of several variables on anchoring strength of bars. Based on the test results, it was concluded that the behavior of the specimen anchored by the mechanical anchorage with the anchor-age length of 12 $d_{b}$, is as good as, or better than that of the specimen anchored by 90-degree standard hook.rd hook.

  • PDF

Dueling DQN-based Routing for Dynamic LEO Satellite Networks (동적 저궤도 위성 네트워크를 위한 Dueling DQN 기반 라우팅 기법)

  • Dohyung Kim;Sanghyeon Lee;Heoncheol Lee;Dongshik Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.173-183
    • /
    • 2023
  • This paper deals with a routing algorithm which can find the best communication route to a desired point considering disconnected links in the LEO (low earth orbit) satellite networks. If the LEO satellite networks are dynamic, the number and distribution of the disconnected links are varying, which makes the routing problem challenging. To solve the problem, in this paper, we propose a routing method based on Dueling DQN which is one of the reinforcement learning algorithms. The proposed method was successfully conducted and verified by showing improved performance by reducing convergence times and converging more stably compared to other existing reinforcement learning-based routing algorithms.

Evaluation of Shear Strength for Reinforced Flat Plates Embedded with GFRP Plates (매립형 GFRP 판으로 보강된 플랫 플레이트의 전단강도 평가)

  • Hwang, Seung Yeon;Kim, Min Sook;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • In this study, The purpose of this study is to experimentally investigate the shear behavior of reinforced flat plate embedded with GFRP(glass fiber reinforced polymer) plate with openings. The GFRP shear reinforcement is manufactured into a plate shape with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens. the parameters include the type of reinforcement and amount of the shear reinforcement., From the test, we analysed the crack, failure mode, Strain, load-displacement graph. a calculation of the shear strength of reinforced flat plate with GFRP plate based on the ACI 318-11 was compared with the test results. The results of the experiment indicate that GFRP plate is successfully applied as a shear reinforcement in the flat plate under punching shear.

Experimental Study for Shear Behavior of RC Beam Strengthened with Channel-type FRP Beam (채널형 FRP빔으로 보강된 RC보의 전단거동에 관한 실험적 연구)

  • Hong, Ki-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2009
  • A recent and promising method for shear strengthening of reinforced concrete(RC) members is the use of near surface mounted(NSM) fiber reinforced polymer(FRP) reinforcement. In the NSM method, the reinforcement is embedded in grooves cut onto the surface of the member to be strengthened and filled with an appropriate binding agent such as epoxy paste or cement grout. This paper illustrates a research program on shear strengthening of RC beams with NSM channel-type FRP beams which is developed in this study. The objective of this study is to clarify the role of channel-type FRP beam embedded to the beam web for shear strengthening of reinforced concrete beams. Included in the study are effectiveness in terms of spacing and angle of channel-type FRP beams, strengthening method, and shear span ratio. the study also aims to understand the additional shear capacity due to glass fiber reinforced polymer beams and carbon reinforced polymer beams. And anther objective is to study the failure modes, shear strengthening effect on ultimate force and load deflection behavior of RC beams embedded with channel-type FRP beams on the shear region of the beams.

Model Tests on the Lateral Behavior of Soldier Pile Type Breakwater Installed in Sand (모래지반에 설치된 가로널식 방파제의 횡방향 거동에 관한 모형실험)

  • Jang In-Sung;Lee Goo-Young;Kwon O-Soon;Park Woo-Sun;Jeong Weon-Mu;Kim Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2005
  • The small harbors and fishing ports in Korea have less economic efficiency if the previous construction method of breakwater would be utilized due to bad ground conditions in spite of low design waves. Therefore, it is necessary to develop a new type breakwater economically applicable to the cases with low design wave. In this study, a soldier pile type breakwater, which is found to be economic and can be easily constructed on the ground without any need of treatment of the ground, was newly introduced. The effects of embedded depth, reinforcement methods as well as pile types including saw type and flat type on the lateral behavior of the proposed breakwaters installed in loose sandy soils were investigated from model test. The test results revealed that the lateral resistance increases by increasing the embedded depth and by adopting the reinforcement techniques such as raker and anchor. Furthermore, it was also verified that the saw type breakwater shows better geotechnical performance than the flat type breakwater.

ASME-CC Code Change to use the Gr.80 Shear Reinforcement in Nuclear Power Plant Structure (원전구조물의 Gr.80 전단철근 사용을 위한 ASME-CC 코드개정에 관한 연구)

  • Lee, Byung-Soo;Lim, Sang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.9-10
    • /
    • 2015
  • Generally significant reinforcement is used in nuclear power plant structures and may cause potential problems when concrete is poured. In particular pouring concrete into structural member joint area is more difficult than other areas since the joint area is very congested due to the crossed bars and the embedded plates, The purpose of this study is to solve these problems by applying Gr.80(550MPa) shear bars to containment structures of nuclear power plant. In order to apply them to containment structures, it is necessary to change ASME-CC code (ASME Sec.III Div.2). The structural performance tests of wall & beam have been done to compare Gr.80(550Mpa) with Gr.60(420MPa) shear bars. The test results and code change proposal were presented to ASME-CC Committee last year and the discussion for code change will be expected to proceed in the near future.

  • PDF

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.