• Title/Summary/Keyword: embedded processors

Search Result 162, Processing Time 0.027 seconds

Design and Implementation for Portable Low-Power Embedded System (저전력 휴대용 임베디드 시스템 설계 및 구현)

  • Lee, Jung-Hwan;Kim, Myung-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.454-461
    • /
    • 2007
  • Portable embedded systems have recently become smaller in size and offer a variety of junctions for users. These systems require high performance processors to handle the many functions and also a small battery to fit inside the system. However, due to its size, the battery life has become a major issue. It is important to have both efficient power design and management for each function, while optimizing processor voltage and clock frequency in order to extend the battery life of the system. In this paper, we calculated the efficiency of power in optimizing power rail. This system has two microprocessors. One is used to play music and movie files while the other is for DMB. In order to reduce power consumption, the DMB microprocessor is turned of while music or videos are played. Lastly, DVFS is applied to the processor in the system to reduce power consumption. Experimental results of the implemented system have resulted in reduced power consumption.

Design and Implementation of an Embedded Spatial MMDBMS for Spatial Mobile Devices (공간 모바일 장치를 위한 내장형 공간 MMDBMS의 설계 및 구현)

  • Park, Ji-Woong;Kim, Joung-Joon;Yun, Jae-Kwan;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.1 s.13
    • /
    • pp.25-37
    • /
    • 2005
  • Recently, with the development of wireless communications and mobile computing, interest about mobile computing is rising. Mobile computing can be regarded as an environment where a user carries mobile devices, such as a PDA or a notebook, and shares resources with a server computer via wireless communications. A mobile database refers to a database which is used in these mobile devices. The mobile database can be used in the fields of insurance business, banking business, medical treatment, and so on. Especially, LBS(Location Based Service) which utilizes location information of users becomes an essential field of mobile computing. In order to support LBS in the mobile environment, there must be an Embedded Spatial MMDBMS(Main-Memory Database Management System) that can efficiently manage large spatial data in spatial mobile devices. Therefore, in this paper, we designed and implemented the Embedded Spatial MMDBMS, extended from the HSQLDB which is an existing MMDBMS for PC, to manage spatial data efficiently in spatial mobile devices. The Embedded Spatial MMDBMS adopted the spatial data model proposed by ISO(International Organization for Standardization), provided the arithmetic coding method that is suitable for spatial data, and supported the efficient spatial index which uses the MBR compression and hashing method suitable for spatial mobile devices. In addition, the system offered the spatial data display capability in low-performance processors of spatial mobile devices and supported the data caching and synchronization capability for performance improvement of spatial data import/export between the Embedded Spatial MMDBMS and the GIS server.

  • PDF

Dynamic Power Management Framework for Mobile Multi-core System (모바일 멀티코어 시스템을 위한 동적 전력관리 프레임워크)

  • Ahn, Young-Ho;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.52-60
    • /
    • 2010
  • In this paper, we propose a dynamic power management framework for multi-core systems. We reduced the power consumption of multi-core processors such as Intel Centrino Duo and ARM11 MPCore, which have been used at the consumer electronics and personal computer market. Each processor uses a different technique to save its power usage, but there is no embedded multi-core processor which has a precise power control mechanism such as dynamic voltage scaling technique. The proposed dynamic power management framework is suitable for smart phones which have an operating system to provide multi-processing capability. Basically, our framework follows an intuitive idea that reducing the power consumption of idle cores is the most effective way to save the overall power consumption of a multi-core processor. We could minimize the energy consumption used by idle cores with application-targeted policies that reflect the characteristics of active workloads. We defined some properties of an application to analyze the performance requirement in real time and automated the management process to verify the result quickly. We tested the proposed framework with popular processors such as Intel Centrino Duo and ARM11 MPCore, and were able to find that our framework dynamically reduced the power consumption of multi-core processors and satisfied the performance requirement of each program.

Energy-aware Instruction Cache Design using Partitioning (분할 기법을 이용한 저전력 명령어 캐쉬 설계)

  • Kim, Jong-Myon;Jung, Jae-Wook;Kim, Cheol-Hong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.241-251
    • /
    • 2007
  • Energy consumption in the instruction cacheaccounts for a significant portion of the total processor energy consumption. Therefore, reducing energy consumption in the instruction cache is important in designing embedded processors. This paper proposes a method for reducing dynamic energy consumption in the instruction cache by partitioning it to smaller (less energy-consuming) sub-caches. When a request comes into the proposed cache, only one sub-cache is accessed by utilizing the locality of applications. By contrast, the other sub-caches are not accessed, leading todynamic energy reduction. In addition, the proposed cache reduces dynamic energy consumption by eliminating the energy consumed in tag matching. We evaluated the energy efficiency by running cycle accurate simulator, SimpleScalar. with power parameters obtained from CACTI. Simulation results show that the proposed cache reduces dynamic energy consumption by $37%{\sim}60%$ compared to the traditional direct-mapped instruction cache.

Performance Analyzer for Embedded AI Processor (내장형 인공지능 프로세서를 위한 성능 분석기)

  • Hwang, Dong Hyun;Yoon, Young Hyun;Han, Chang Yeop;Lee, Seung Eun
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.149-157
    • /
    • 2020
  • Recently, as interest in artificial intelligence has increased, many studies have been conducted to implement AI processors. However, the AI processor requires functional verification as well as performance verification on whether the AI processor is suitable for the application. In this paper, We propose an AI processor performance analyzer that can verify the application performance and explore the limitations of the processor. By Using the performance analyzer, we explore the limitations of the AI processor and optimize the AI model to fit an AI processor in image recognition and speech recognition applications.

Parallel Implementations of Digital Focus Indices Based on Minimax Search Using Multi-Core Processors

  • HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.542-558
    • /
    • 2023
  • A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.

Design and Implementation of a Hybrid TCP/IP Offload Engine Prototype (Hybrid TCP/IP Offload Engine 프로토타입의 설계 및 구현)

  • Jang Han-Kook;Chung Sang-Hwa;Oh Soo-Cheol
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.5
    • /
    • pp.257-266
    • /
    • 2006
  • Recently TCP/IP Offload Engine (TOE) technology, which processes TCP/IP on a network adapter instead of the host CPU, has become an important approach to reduce TCP/IP processing overhead in the host CPU. There have been two approaches to implementing TOE: software TOE, in which TCP/IP is processed by an embedded processor on a network adapter; and hardware TOE, in which all TCP/IP functions are implemented by hardware. This paper proposes a hybrid TOE that combines software and hardware functions in the TOE. In the hybrid TOE, functions that cannot have guaranteed performance on an embedded processor because of heavy load are implemented by hardware. Other functions that do not impose as much load are implemented by software on embedded processors. The hybrid TOE guarantees network performance near that of hardware TOE and it has the advantage of flexibility, because it is easy to add new functions or offload upper-level protocols of TCP/IP. In this paper, we developed a prototype board with an FPGA and an ARM processor to implement a hybrid TOE prototype. We implemented the hardware modules on the FPGA and the software modules on the ARM processor. We also developed a coprocessing mechanism between the hardware and software modules. Experimental results proved that the hybrid TOE prototype can greatly reduce the load on a host CPU and we analyzed the effects of the coprocessing mechanism. Finally, we analyzed important features that are required to implement a complete hybrid TOE and we predict its performance.

Parallel LDPC Decoding on a Heterogeneous Platform using OpenCL

  • Hong, Jung-Hyun;Park, Joo-Yul;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2648-2668
    • /
    • 2016
  • Modern mobile devices are equipped with various accelerated processing units to handle computationally intensive applications; therefore, Open Computing Language (OpenCL) has been proposed to fully take advantage of the computational power in heterogeneous systems. This article introduces a parallel software decoder of Low Density Parity Check (LDPC) codes on an embedded heterogeneous platform using an OpenCL framework. The LDPC code is one of the most popular and strongest error correcting codes for mobile communication systems. Each step of LDPC decoding has different parallelization characteristics. In the proposed LDPC decoder, steps suitable for task-level parallelization are executed on the multi-core central processing unit (CPU), and steps suitable for data-level parallelization are processed by the graphics processing unit (GPU). To improve the performance of OpenCL kernels for LDPC decoding operations, explicit thread scheduling, vectorization, and effective data transfer techniques are applied. The proposed LDPC decoder achieves high performance and high power efficiency by using heterogeneous multi-core processors on a unified computing framework.

Computation-Communication Overlapping in AES-CCM Using Thread-Level Parallelism on a Multi-Core Processor (멀티코어 프로세서의 쓰레드-수준 병렬성을 활용한 AES-CCM 계산-통신 중첩화)

  • Lee, Eun-Ji;Lee, Sung-Ju;Chung, Yong-Wha;Lee, Myung-Ho;Min, Byoung-Ki
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.863-867
    • /
    • 2010
  • Multi-core processors are becoming increasingly popular. As they are widely adopted in embedded systems as well as desktop PC's, many multimedia applications are being parallelized on multi-core platforms. However, it is difficult to parallelize applications with inherent data dependencies such as encryption algorithms for multimedia data. In order to overcome this limit, we propose a technique to overlap computation and communication using an otherwise idle core in this paper. In particular, we interpret the problem of multimedia computation and communication as a pipeline design problem at the application program level, and derive an optimal number of stages in the pipeline.

Dynamic Voltage Scaling based on Workload of Application for Embedded Processor (응용프로그램의 작업량을 고려한 임베디드 프로세서의 동적 전압 조절)

  • Wang, Hong-Moon;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.93-99
    • /
    • 2008
  • Portable devices generally have limited energy sources, so there is a need to minimize the power consumption of processor using energy conservation methods. One of the most common energy conservation methods is dynamic voltage scaling (DVS). In this paper, we propose a new DVS algorithm which uses workload of application to determine frequency and voltage of processors. The posed DVS algorithm consists of DVS module in kernel and specified function in application. The DVS module monitors the processor utilization and changes frequency and voltage periodically. The other part monitors workload of application. With these two procedures, the processor can change the performance level to meet their deadline while consuming less energy. We implemented the proposed DVS algorithm on PXA270 processor with Linux 2.6 kernel.