• Title/Summary/Keyword: embedded computing

Search Result 537, Processing Time 0.029 seconds

A Study on A Web-Based DevOps Platform Using Linux Container (리눅스 컨테이너를 이용한 웹기반의 DevOps 플랫폼 연구)

  • Chung, Geunhoon;Park, Junseok;Lee, Geuk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.71-80
    • /
    • 2019
  • DevOps is a combining which means giving a diverse environments for software development and operations through whole software lifecycle. The key value of the proposed DevOps platform is the fast and stable service capability for a software development and operation environment. To do this, the DevOps gives pre-embedded 7 programming languages-Java, C/C++, Python, PHP, Ruby, Node.js, goLang and 7 service frameworks - Korea eGov Framework, Spring, Struts, Django, Laravel, Rails, Express. With the DevOps platform, it is possible to develop a software and also to build and distribute operation packages directly with the Linux containers. In this paper, the performance evaluation for a compile time, a distribution time and a processing capability is will be also proved. Though the performance evaluation, this paper shows capabilities of the proposed DevOps for Cloud services with commercial service level, prospectively.

Context-aware Mobile system for Augmentative and Alternative Communication (보완대체 의사소통도구를 위한 상황인식 모바일 시스템)

  • Park, DongGyu;Kim, Young-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1740-1746
    • /
    • 2013
  • Augmentative and alternative communication(AAC) is a communication tool for those with impairments or restrictions on the production or comprehension of spoken language. Traditional AAC has used a portable board with pictures and texts with which disabled person could be supported by it. Currently, smart phone based AAC researches and developments are actively studying. With emerging concepts of context-aware computing, the mobile devices can provide mobile users with timely information and location based services. We proposed a adjustable AAC system for disabled people of which has variable layouts and selectable items. We also implemented context-ware application for AAC systems including time, location and click count informations on smart phone. The system can adaptively change its layout and select AAC items depending on various situation of disabled persons.

The Design and Implementation of Sensor Data Processing Module Based on TinyOS Utilizing TinyDB and LineTracer (TinyDB와 라인트레이서를 활용한 TinyOS기반의 센서 데이터 처리 모듈 설계 및 구현)

  • Lee, Sang-Hoon;Moon, Seung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10B
    • /
    • pp.883-890
    • /
    • 2006
  • The study of sensor network database is beginning to liven up as we are interested in Ubiquitous Computing technology in hardware, communication, database and so on. Especially, as new smart sensors have capabilities of real-time information gathering and analysis of each sensor node, data processing becomes an important issue in Ubiquitous Computing. In thesis, we have applied TinyDB(query processing system) to carry sensor node with line tracer which can follow the fixed path. After we gathered data around path, we have processed data in TinyDB GUI, gathered data, displayed data on a web server. Also we have a web browser on an embedded board for convenient user interface and implemented touch screen such that users can operate with a finger.

Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications (이동 물체 탐지를 위한 자기센서 응용 신호처리 기법)

  • Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.153-162
    • /
    • 2009
  • This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.

Design and Implementation of a Data Management System for Mobile Spatio-Temporal Query (모바일 시공간 질의을 위한 데이타 관리 시스템의 설계 및 구현)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Joung-Joon;Kim, Kyu-Ho;Kim, Jeong-Lae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.109-113
    • /
    • 2011
  • Recently, according to the development of ubiquitous computing, the u-GIS which not only used in u-Transport, u-Care, u-Fun, u-Green, u-Business, u-Government, and u-City but also used to provides various spatial information such as the location of user is being the core technology of the ubiquitous computing environment. In this paper, we implemented an mobile spatio-temporal Query Processing Systems for handling the Spatio-Temporal Data in mobile equipment.The mobile spatio-temporal Query Processing Systems provides the spatio-temporal data type and the spatio-temporal operator that is expanded by the spatial data type and the spatial operator from OepenGIS "Simple Feature Specification for SQL". It supports arithmetic coding compression techniques that is considered with a spatio-temporal data specific character. It also provides the function of data cashing for improving the importation and exportation of the spatio-temporal data between a embedded spatio-temporal DBMS and u-GIS server.

Toward Design and Implement to Multiple Schemes for Strong Authentication Mechanism - Case Studying : Secure Entrance System - (다단계 사용자 신분확인 메커니즘 설계와 구현 방안 : 출입통제 시스템 사례 중심으로)

  • Hong Seng-Phil;Kim Jae-Hyoun
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.161-172
    • /
    • 2006
  • As the innovative technologies related to ubiquitous computing are being rapidly developed in recent IT trend, the concern for IT dysfunction(e.g., personal information abuse, information risk, threat, vulnerability, etc.) are also increasing. In our study, we suggested how to design and implement to multiple schemes for strong authentication mechanism in real system environments. We introduce the systematic and secure authentication technologies that resolve the threats incurring from the abuse and illegal duplication of financial transaction card in the public and financial institutions. The multiple schemes for strong authentication mechanism applied to java technology, so various application programs can be embedded, Independent of different platforms, to the smartcard by applying the consolidated authentication technologies based on encryption and biometrics(e.g., finger print identification). We also introduce the appropriate guidelines which can be easily implemented by the system developer and utilized from the software engineering standpoint of view. Further, we proposed ways to utilize java card based biometrics by developing and applying the 'smartcard class library' in order for the developer and engineers involved in real system environment(Secure entrance system) to easily understand the program. Lastly, we briefly introduced the potential for its future business application.

  • PDF

A Study on Implementation of Remote Control System using Wireless Technologies (무선통신을 이용한 원격제어 기술 구현)

  • Jang, Dong-won;Cho, In-Kwee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.307-309
    • /
    • 2016
  • This paper present about the system for sensing and controlling a wireless power transfer system using bluetooth protocol in robot, healthcare, smart-grid, and autonomous car. Recently a variety of applications using the Internet of Things (Internet of Things) and machine to machine (Machine to Machine) have been raised in many industries. To do this, it requires the fusion technology which is constituted with control, computing and networking. Embedded system is centered existing control system and Cyber Physical System(CPS) is the systems which was converged of a computing technologies using a wired or wireless network. CPS was adopted in the future government-led technology in the United States and Europe and is being pursued in cooperation with institutes, industries, and academia. In this paper, we implement and describe a technique for controlling the system for transmitting power wirelessly by sensing method using the matching of CPS technology concepts.

  • PDF

Comparison of Update Performance by File System of Mobile Database SQLite3 (모바일 데이터베이스 SQLite3의 File System별 갱신 성능 비교)

  • Choi, Jin-oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1117-1122
    • /
    • 2020
  • The improving performance and utilizing application fields of mobile devices are getting bigger and wider. With this trend, applications that use database engines on mobile devices are also becoming common. Applications requiring mobile databases include mobile server databases, edge computing, fog computing, and the like. By the way, the most representative and widely used mobile database is SQLite3. In this paper, we test and compare the update performance of SQLite3 by some file systems. The update performance of the file systems in the mobile environment is an important performance factor in the limited H/W environment. The comparison file system was chosen as FAT, Ext2, and NTFS. Under the same conditions, experiments with each file system to test update performance and characteristics were processed. From the experimental results, we could analyze the advantages and disadvantages of each file system for each database update pattern.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.

Implementation of Brain-machine Interface System using Cloud IoT (클라우드 IoT를 이용한 뇌-기계 인터페이스 시스템 구현)

  • Hoon-Hee Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • The brain-machine interface(BMI) is a next-generation interface that controls the device by decoding brain waves(also called Electroencephalogram, EEG), EEG is a electrical signal of nerve cell generated when the BMI user thinks of a command. The brain-machine interface can be applied to various smart devices, but complex computational process is required to decode the brain wave signal. Therefore, it is difficult to implement a brain-machine interface in an embedded system implemented in the form of an edge device. In this study, we proposed a new type of brain-machine interface system using IoT technology that only measures EEG at the edge device and stores and analyzes EEG data in the cloud computing. This system successfully performed quantitative EEG analysis for the brain-machine interface, and the whole data transmission time also showed a capable level of real-time processing.