• Title/Summary/Keyword: embankment slope

Search Result 171, Processing Time 0.028 seconds

A Study on Embankment Slope Management System (성토사면유지관리시스템 개발에 관한 연구)

  • Kim, Seung-Hyun;Kim, Hong-Gyun;Lee, Jung-Yup;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.749-758
    • /
    • 2010
  • Embankment Slope (or Fill Slope) is defined as artificial slope formed by the filling of soil or rocks on the original ground. Recently a lot of embankment failures and collapse has occurred due to the increase of torrential rainfall and typhoons. Embankment collapse has lead to a great loss of lives and property therefore there is a need to establish a systematic embankment slope management system that will handle the maintenance and repair of risky embankment slopes. The objective of this study is to establish an "Embankment Slope Management Method" for embankment slopes located along national highways all over Korea. The method for field investigation of embankment slopes was recommended and the system for investment priority determination was also developed. The factors that lead to the collapse of embankment slopes caused by natural calamities were also determined through the initial survey of embankment slopes located along river fronts and mountainous areas.

  • PDF

Linear regression analysis for factors influencing displacement of high-filled embankment slopes

  • Zhang, Guangcheng;Tan, Jiansong;Zhang, Lu;Xiang, Yong
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.511-521
    • /
    • 2015
  • It is a common failure type that high-filled embankment slope sideslips. The deformation mechanism and factors influencing the sideslip of embankment slope is the key to reduce the probability of this kind of engineering disaster. Taking Liujiawan high-filled embankment slope as an example, the deformation and failure characteristics of embankment slope and sheet-pile wall are studied, and the factors influencing instability are analyzed, then the correlation of deformation rate of the anti-slide plies and each factor is calculated with multivariate linear regression analysis. The result shows that: (1) The length of anchoring segment is not long enough, and displacement direction of embankment and retaining structure are perpendicular to the trend of the highway; (2) The length of the cantilever segment is so large that the active earth pressures behind the piles are very large. Additionally, the surface drainage is not smooth, which leads to form a potential sliding zone between bottom of the backfill and the primary surface; (3) The thickness of the backfill and the length of the anti-slide pile cantilever segment have positive correlation with the deformation whereas the thickness of anti-slide pile through mudstone has a negative correlation with the deformation. On the other hand the surface water is a little disadvantage on the embankment stability.

응력-침투 연계 해석에 의한 필 댐의 최적 설계

  • Park, Chun-Sik;Lee, Jun-Suk;Kim, Jong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.862-870
    • /
    • 2010
  • This thesis has been researched on optimized design method for the total cross section of embankment considering the fact that the size of embankment cross section is directly related with economic efficiency when dam designing. In general, embankment cross section of fill dam is either determined by cohesion and angle of internal friction, a strength parameter of embankment materials or by permeability of embankment. Therefore the size of embankment cross section depending on strength parameter of embankment materials was determined by using MIDAS-GTS program through stress-seepage coupled analysis at the time of fill dam design. As a result, determination of embankment cross section was more affected by the size of central core and permeability rather than by slope stability by shear strength and it was revealed that in case of embankment height being over 20m, stability against infiltration and slope action could be secured only when embankment slope is at least over 1:2.5. In addition, it was also revealed that in case of making the size of central core exceeding specification standard, total cross section of embankment could be reduced considerably and at the time of embankment design, adequate size and appropriateness of embankment cross section could be determined with referring the table suggested by this study.

  • PDF

Stability Analysis of the Reinforced Embankment on Soft Foundations using the Limit Equilibrium Method (한계평형법에 의한 연약지반 보강성토의 안정해석)

  • 고남영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.101-110
    • /
    • 1995
  • The use of geotextile as reinforced materials in Soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, slope of embankment and especially soft foundation, etc. In the past, however, its design and construction have been performed empirically. In this study, to investigate of the effect of geotextiles reinforced slope of the embankment on a very soft foundation, a limit equilibrium analysis program calculating the safety factor of embankment on very soft foundation was developed. The study was focussed on such factors as type of geotextile, tensile strength, amount of reinforcement, and inclination of embankment. And the 4imit equilibrium analysis program was written on the basis of Low's slope stability theory with some modification. The following conclusions were drawn from this study. (1) The orientation of reinforcement can be assumed either horizontal or tangential to the slip circle. The factor of safety with tangential reinforcement is larger than that with the horizontal reinforcement. (2) In general, the factor of safety increases, as the slope reduces. However, it is preferable to use geotextiles with higher tensile strength rather than to reduce the slope of the embankment, because it is difficult to adjust the slope as desired. (3) The factor of safety obtained by numerical computation is affected only by the tensile strength, but not by the type of the geotextile.

  • PDF

A Study on The Sliding Failure Analysis of Embankment Slope in Soft Ground Area Under Construction (시공중인 연약지반 성토부 활동파괴의 원인분석에 관한 연구)

  • Chun, Byung-Sik;Kim, Il-Hwan;Lee, Young-Sub;Jung, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1036-1041
    • /
    • 2008
  • In order to analysis the reason of sliding failure in embankment slope under construction in soft soil area, a model section located in Gimhae Region in Gyeongsangnam-Do, where the sliding failure had been occurred during embankment works in soft soil area, had been selected. This area had been firstly treated with the Pack Drain Method, and additional embankment works of 9.7 meters out of total 14 meters in thickness had been under construction. The results of analysis showed that the reason of sliding failure were overspeed in embankment construction and the overestimation of design factors in calculating strength of each layer of embankment and poor management and inaccuracy reading of measurement devices.

  • PDF

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Slope Stability due to Additional Embankment (제방 추가성토에 따른 사면안정)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3232-3236
    • /
    • 2012
  • Consolidation and remedies for slope stability were considered for the slope with additional embankment. Transferred stresses due to additional embankment were assessed by the derived formula based on elasticity theory. Available remedies for slope stability with additional embankment including JSP method, stone column method and EPS method were studied. Caution needed for using JSP method is high pressure which can result in heaving of adjacent soils. Shortages of used case and noise of construction of stone column method are also considered for the safe remedy for slope stability.

Variation of Seepage Line through Embankments by Permeability of Layer (지반의 투수성에 따른 제체 침투류의 변화)

  • 신진환;이봉직
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 1996
  • The movement of water through a river embankment and its influenced upon the stability of the slope of the embankment are described. The stability of the embankment is depended upon the location of seepage line. As the seepage flow occurs in the embankment, the slope of the embankment loses its stability. Of particular interest is the stability following a rapid change of water level. The variation of seepage line in the embankment model by a fluctuation of water level is discussed. The experimental models were construction with slopes of 1 : 1.5, 1 : 2.0, 1 : 2.5 and the flow velocity was turned from 60cm/sec~90cm/sec. Based on the experimental study, the following conclusions are drawn. 1) When water level is raised, the seepage line of downstream slope Is raised rapidly as flow velocity increases. 2) For the case of permeable layer, the seepage line raised rapidly as compare with impermeable layer when water lever is raised.

  • PDF

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall (강우시 사면안전율 변화를 이용한 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF