• Title/Summary/Keyword: elongation induced crystallization

Search Result 6, Processing Time 0.02 seconds

The Effect of Thermal History Induced by Melt Spinning on the Mechanical Properties of Polylactic Acid Fibers (용융 가공에 의해 발현된 열 이력이 폴리락트산 섬유의 기계적 물성에 미치는 영향)

  • 천상욱;김수현;김영하;강호종
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.656-663
    • /
    • 2000
  • The Effects of thermal history during the melt spinning process on the mechanical properties and crystallinity of polylactic acid (PLLA) fibers have been studied. Thermal history applied on PLLA during the melt process caused the decrease of number-average molecular weights and this resulted in the lowering of orientation and crystallinity in PLLA fibers. As a result, the longer applied thermal history, the less tensile strength and modulus, and the higher elongation at break. It was also found that primary factor for controlling crystallinity of PLLA fiber was the stress induced crystallization while the thermal induced crystallization had a little effect on the crystallinity of PLLA fibers. However, the thermal induced crystallization turn out to be important in the crystallinity developed by annealing of PLLA fibers.

  • PDF

Shape Memory Characteristics and Crystallization Annealing of Amorphous $Ti_{50}-Ni_{30}-Cu_{20}$ Ribbons (비정질 $Ti_{50}-Ni_{30}-Cu_{20}$ 리본의 결정화 열처리와 형상기억특성 변화)

  • Kim, Yoen-Wook;Yun, Young-Mok
    • Journal of Korea Foundry Society
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • Ti-Ni-Cu alloys are very attractive shape memory alloys for applications as actuators because of a large transformation elongation and a small transformation hysteresis. Rapidly solidified Ti-Ni alloy ribbons have been known to have the shape memory effect and superelasticity superior to the alloy ingots fabricated by conventional casting. In this study, solidification structures and shape memory characteristics of $Ti-Ni_{30}-Cu_{20}$ alloy ribbons prepared by melt spinning were investigated by means of DSC and XRD. Operating parameters to fabricate the amorphous ribbons were the wheel velocity of 55 m/s and the melt spinning temperature of $1500^{\circ}C$. The crystallization temperature was measured to be $440^{\circ}C$. The crystallized ribbons exhibited very fine microstructure after annealing at $440^{\circ}C$ for 10 minutes and $460^{\circ}C$ for 5 minutes and was deformed up to about 6.8% and 6.23% in ductile manner, respectively. Stress-strain curve of the ribbon exhibited a flat stress-plateau at 64 MPa and this is associated with the stress-induced a B2-B19 martensitic transformation. During cycle deformation with the applied stress of 220 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be $4.3^{\circ}C$ and 3.6%.

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.

A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams (단열 발포 폴리올레핀계 구조체의 특성에 관한 연구)

  • Hwang Jun-Ho;Kim Woo-nyon;Jun Jae-Ho;Kwak Soon-Jong;Hwang Seung-Sang;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2005
  • This study investigates the isothermal crystallization behaviors of polypropylene-polyethylene-(1-butene) terpolymer and the adiabatically expanded polyolefin structured foams. For this purpose, butane gas was used as a physical blowing agent. Avrami equation has been used to interpret theoretically the experimental results obtained by either DSC or polarized optical microscope. It is believed that elongation induced crystallization occurring during the adiabatic expansion process has resulted in an increase in crystallization rate, eventually leading to a faster growth rate of spherulites and an increase in the nucleation density. An analysis of the foam by SEM images showed that the structure of foam is uniform (below diameter 30 $\mu$m closed cell) In addition, the thermal conductivity and the compressive strength of the polyolefin structured foams was measured. The thermal conductivity of foamed resin with excellent insulation characteristics is reduced compared with unfoamed resin. The compressive strength is decreased with increase in the expansion ratio.

Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures (고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동)

  • Jeong, Young-Jin;Kim, Ki-Hyun;Oh, Sang-Yeob;Shin, Hyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF

Structure Development in Drawn Poly(trimethylene terephthalate) (연신에 의한 폴리(트리메틸렌 테레프탈레이트)의 구조 변형)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.477-483
    • /
    • 2003
  • The structure development of drawn poly(trimethylene terephthalate) PTT as a function of draw down ratio and drawing temperature was studied. The special effort was made to find out the effect of structural development on thermal properties and crystallinity in drawn PTT. The changes in shrinkage ratio and mechanical properties were understood base on the level of crystallinity and orientation of the drawn PTT. The stress induced crystallization caused the increase in glass transition temperature and the decrease in cold crystallization temperature and enthalpy. The crystallinity and orientation were dependent upon the level of applied stress level as well as chain flexibility at high drawing temperature. The drawing resulted in the increase of shrinkage ratio but it was minimized by increasing of crystallinity. The development of orientation resulted in increasing modulus and tensile strength while decreasing elongation at break.