• Title/Summary/Keyword: elliptical cylinder

Search Result 21, Processing Time 0.026 seconds

Stress Intensity factor Calculation for the Axial Semi-Elliptical Surface Flaws on the Thin-Wall Cylinder Using Influence Coefficients (영향계수를 이용한 원통용기 축방향 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moon, Ho-Rim;Jeong, Ill-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2390-2398
    • /
    • 2002
  • For integrity analysis of nuclear reactor pressure vessel, including the Pressurized thermal shock analysis, the fast and accurate calculation of the stress intensity factor at the crack tip is needed. For this, a simple approximation scheme is developed and the resulting stress intensity factors for axial semi-elliptical cracks in cylindrical vessel under various loading conditions are compared with those of the finite element method and other approximation methods, such as Raju-Newman's equation and ASME Sec. Xl approach. For these, three-dimensional finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite clement analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. The approximation solutions are within $\pm$2.5% of the those of FEA using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the VINTIN method provides sufficiently accurate stress intensity factor values for axial semi-elliptical flaws on the surface of the reactor pressure vessel.

The effects of axis ratio and rotation angle on flows around an elliptical cylinder (타원의 장단축 비율과 회전 각도에 의한 유동 변화)

  • O, Geun-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.619-624
    • /
    • 2014
  • 본 논문에서는 타원형 실린더 주위의 유동과 항력 및 양력 계수의 변화를 관찰하였다. EDISON_CFD를 이용하여 자유 유동(free stream)에서 타원형 실린더의 장단축 비율과 회전된 각도의 변화에 따라 실린더 후방의 유동과 압력 분포의 변화를 보고, 이에 따른 항력 계수 및 양력 계수의 변화를 시뮬레이션 하였다. 또한, 채널 유동 내에서 벽 근접에 따른 유동 변화와 항력 및 양력 계수의 변화를 관찰하였다.

  • PDF

Expressions of Magnetic Field and Magnetic Gradient Tensor due to an Elliptical Disk (타원판에 의한 자력 및 자력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.108-118
    • /
    • 2024
  • In this study, expressions for the magnetic field and magnetic gradient tensor due to an elliptical disk were derived. Igneous intrusions and kimberlite structures often have elliptical cylinders with axial symmetry and elliptical cross sections. An elliptical cylinder with varying cross-sectional areas was approximated using stacks of elliptical disks. The magnetic fields of elliptical disks were derived using the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor, as described in a previous study (Rim, 2024). The magnetic gradient tensor due to an elliptical disk is derived by differentiating the magnetic fields, which is equivalent to obtaining ten triple-derivative functions acquired by differentiating the gravitational potential of the elliptical disk three times in each axis direction. Because it is possible to exchange the order of differentiation, the magnetic gradient tensor is derived by differentiating the gravitational potential of the elliptical disk three times, which is then converted into a complex line integral along the closed boundary curve of the elliptical disk in the complex plane. The expressions for the magnetic field and magnetic gradient tensor derived from a complex line integral in complex plane are perfectly consistent with those of the circular disk derived from the Lipschitz-Hankel integral.

Study of Terminal Velocity of 2-D Elliptical Object by Sedimentation Characteristics (2차원 타원형 물체의 유체 중 침강특성이 종단속도에 미치는 영향 연구)

  • Jeon, Jae-Yun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.548-553
    • /
    • 2016
  • 본 연구는 타원형 물체가 유체 중에서 침강할 때 물체의 형상과 밀도에 따른 침강특성을 분석하는 것이며, 이로 인해 종단속도에 미치는 영향을 평가하는 것이다. 복잡한 형태의 물체를 타원기둥으로 단순화하였고, 낮은 Reynolds 수(=0.5~100)에 대하여 연구를 진행하였다. 또한 침강형태가 종단속도에 미치는 영향을 연구하였다. 수치해석 검증을 통해 정확하고 효율적인 격자 크기를 결정하였다. 정확한 분석을 위해 단순히 종단속도의 변화를 본 것이 아니라 진동하지 않은 물체의 이론적 속도와 비교하여 이와 얼마나 차이가 있는지를 확인하였다. 수치해석 결과 장단축비에 따라 물체의 침강특성이 크게 변하였고 그 경향은 밀도비에 따라 다른 양상을 보였다. 또한 각의 진동에 대한 진폭과 진동수가 물체의 침강속도에 영향을 주는 것을 확인하고 그 원인에 대해서도 연구하였다.

  • PDF

The Vibration of an Elastic Rectangular Plate in a Fluid (직사각형판(直四角形板)의 접수진동(接水振動))

  • Keuck-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 1976
  • It is a well-known phenomenon that, in the case of vibrations of an elastic body in a fluid such as water, the presence of the surrounding fluid has the effect of lowering the natural frequencies of the vibration as compared with those in air or vacuum on account of the increased inertia, i.e. added mass. In this report, defining the mass increase factor as the ratio of added mass to vibration mass of the body in air, the author investigated the mass increased factor of an elastic plate vibrating in the fluid. It is assumed that the edges of the plate are simply supported, and that the surrounding fluid is an infinite ideal one. For the problem formulation the elliptical cylindrical coordinate system is adopted, so that a rectangular plate may be represented by a sheet degenerated from an elliptical cylinder. By virtue of the coordinate system adopted, plates which are chordwisely finite and lengthwisely contineous could directly be treated, but plates which are chordwisely finite in both directions could not be treated directly. For the latter, hence, plates which are chordwisely finite and lengthwisely semi-finite are investigated as an appropriate approximation. Some examples of the mass increase factor are numerically calculated for the fundamental mode and modes of zero or one nodal line in each direction with the range of the aspect ratio from 1 to 10 or more.

  • PDF

Experimental study on wake-induced vibrations of two circular cylinders with two degrees of freedom

  • Du, Xiaoqing;Jiang, Benjian;Dai, Chin;Wang, Guoyan;Chen, Suren
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.57-68
    • /
    • 2018
  • Wind tunnel tests are conducted to investigate wake-induced vibrations of two circular cylinders with a center-to-center spacing of 4 diameters and attack angle varying from $0^{\circ}$ to $20^{\circ}$ for Reynolds numbers between 18,000 and 168,800. Effects of structural damping, Reynolds number, attack angle and reduced velocity on dynamic responses are examined. Results show that wake-induced vortex vibrations of the downstream cylinder occur in a wider range of the reduced velocity and have higher amplitudes in comparison to the vortex-induced vibration of a single circular cylinder. Two types of wake-induced instability phenomena with distinct dynamic characteristics are observed, which may be due to different generation mechanisms. For small attack angles like $5^{\circ}$ and $10^{\circ}$, the instability of the downstream cylinder characterizes a one-degree-of-freedom (1-DOF) oscillation moving in the across-wind direction. For a large attack angle like $20^{\circ}$, the instability characterizes a two-degree-of-freedom (2-DOF) oscillation with elliptical trajectories. For an attack angle of $15^{\circ}$, the instability can transform from the 1-DOF pattern to the 2-DOF one with the increase of the Reynolds number. Furthermore, the two instabilities show different sensitivity to the structural damping. The 1-DOF instability can be either completely suppressed or reduced to an unsteady oscillation, while the 2-DOF one is relatively less sensitive to the damping level. Reynolds number has important effects on the wake-induced instabilities.

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions (다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가)

  • Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

Study on the Development of CW YAG Laser for Processing (가공용 CW YAG 레이저 개발에 관한 연구)

  • Kim, Hee-Je;Lee, Hong-Sik;Cho, Yun-Ok;Jin, Yun-sik;Rho, Young-Soo;Kim, Young-Bae;Moon, Dek-Soi;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.501-502
    • /
    • 1992
  • This paper deals with the experiment of CW YAG laser for processing. The YAG laser is spotted very small size beam compared with $CO_2$ laser having short wave-length. That is used broadly in material processing because of easy reaction to the materials, and the maintenance is very simple. The power delivery and focussing is done conventional optical components, and splitting beam is used many point stop-welding. In these studies, especial interest is nesessary to perpare for future technology. Our study aims to develop the YAG laser system and to accumulate design and construction technology. In basic experiments, we obtain the maximum output power of 50 W with the single elliptical cylinder.

  • PDF

Growth Inhibition of Helicobacter pylorio by Reynoutria elliptica Migo. (호장근에 의한 Helicobacter pylori의 생육 저해)

  • Lee, In-Seon;Im, Hyo-Gwon;Lee, Syng-Ook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1182-1187
    • /
    • 2003
  • This study was performed to evaluate the potentiality of Reynoutria elliptica Migo., being used as a folk remedy and a herb medicine for urethritis, cystitis, etc., on growth inhibition of Helicobacter pylori which is known as the ulcerogenic pathogen. The minimum inhibitory concentration (MIC) value of methanol extract from Reynoutria elliptica Migo, was determined to be 120 ppm for H. pylori and urease activity derived from H. pylori was inhibited over 80% by the extract at 2 mg/mL in urea broth. Among various solvent fraction of the methanol extract, the hexane fraction showed a significant inhibitory effect on the growth of H. pylori reducing both its growth and urease activity. Scanning and transmission electron micrographs of H. pylori treated with the methanol extract at 2 mg/mL for 3 hr showed that the cell walls and membranes were disrupted so that the cytoplasmic components were leaked from the body. These results suggest that Reynoutria elliptica Migo. possesses a therapeutic potential on the gastric disease caused by H. pylori.

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.