• Title/Summary/Keyword: elliptic operator

Search Result 57, Processing Time 0.03 seconds

A CERTAIN EXAMPLE FOR A DE GIORGI CONJECTURE

  • Cho, Sungwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-769
    • /
    • 2014
  • In this paper, we illustrate a counter example for the converse of a certain conjecture proposed by De Giorgi. De Giorgi suggested a series of conjectures, in which a certain integral condition for singularity or degeneracy of an elliptic operator is satisfied, the solutions are continuous. We construct some singular elliptic operators and solutions such that the integral condition does not hold, but the solutions are continuous.

Elliptic Linear Weingarten Surfaces

  • Kim, Young Ho
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.547-557
    • /
    • 2018
  • We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

ELLIPTIC PROBLEM WITH A VARIABLE COEFFICIENT AND A JUMPING SEMILINEAR TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.125-135
    • /
    • 2012
  • We obtain the multiple solutions for the fourth order elliptic problem with a variable coefficient and a jumping semilinear term. We have a result that there exist at least two solutions if the variable coefficient of the semilinear term crosses some number of the eigenvalues of the biharmonic eigenvalue problem. We obtain this multiplicity result by applying the Leray-Schauder degree theory.

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

Development of Elliptic Relaxation Model With The Inhomogeneous Correction (비균질 수정을 사용한 타원완화모형 개발)

  • Chun Kun Ho;Choi Young Don;Shin Jong Keun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.815-818
    • /
    • 2002
  • The elliptic relaxation model(ERM) with the inhomogeneous correction intermediate between near wall with and far from the wall. The source of the ERM usually was appled quasi-homogeneous pressure-strain correlation in homogeneous situations. This formulation was easily applied to the linear model or non-linear pressure-strain model. It is observed that the boundary conditions of the relaxation operator dominate the homogeneous pressure-strain model in the near wall region. While looking at high-Reynolds number flows, it was found necessary to modify the effect of the relaxation operator throughout the log region by accounting for gradients of the flatness variable and turbulent length scales. These effects are kinematic blocking of the wall normal velocity fluctuation and pressure reflections from the surface. This model is wall distances and unit vectors which make the model applicable to flows boundary by a complex geometry. Inhomogeneous correction model is computed inertial and non-inertial channel flow These are compared DNS(Kim et at., Kristofffrsen & Andersson) for channel flow. The present model could be predicted well for rotating flows.

  • PDF

MULTIPLICITY AND NONLINEARITY IN THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tack-Sun;Choi, Q-Heung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.161-169
    • /
    • 2008
  • We investigate the existence of solutions u(x, t) for perturbations of the elliptic system with Dirichlet boundary condition $$\array {L{\xi}+{\mu}g({\xi}+2{\eta})=f\;in\;{\Omega}}\\{L{\eta}+{\nu}g({\xi}+2{\eta})=f\;in\;{\Omega}}$$ (0.1) where $g(u)=Bu^+-Au^-$, $u^+=max\{u,\;0\}$, $u^-=max\{-u,\;0\}$, ${\mu}$, ${\nu}$ are nonzero constants and the nonlinearity $({\mu}+2{\nu})g(u)$ crosses the eigenvalues of the elliptic operator L.

  • PDF

FINITE ELEMENT METHOD FOR SOLVING BOUNDARY CONTROL PROBLEM GOVERNED BY ELLIPTIC VARIATIONAL INEQUALITIES WITH AN INFINITE NUMBER OF VARIABLES

  • Ghada Ebrahim Mostafa
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.613-622
    • /
    • 2023
  • In this paper, finite element method is applied to solve boundary control problem governed by elliptic variational inequality with an infinite number of variables. First, we introduce some important features of the finite element method, boundary control problem governed by elliptic variational inequalities with an infinite number of variables in the case of the control and observation are on the boundary is introduced. We prove the existence of the solution by using the augmented Lagrangian multipliers method. A triangular type finite element method is used.