• Title/Summary/Keyword: elliptic curve crypto system

Search Result 13, Processing Time 0.021 seconds

A Software Implementation of The Elliptic Curve Digital Signature Algorithm on a Embedded System (임베디드 시스템에서의 ECDSA(Elliptic Curve Digital Signature Algorithm) 구현)

  • Kim, Hyeon-Ik;Kim, Yong-Min;Jeong, Seok-Won;Lee, Sang-Jin;Jeong, Chang-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.1014-1017
    • /
    • 2003
  • In this paper, after the crypto acceleration board of the server-termination type is designed, we implement the Elliptic Curve Digital Signature Algorithm on the board that serves data integrity and user authentication. For implementing ECDSA, we use crypto co-processor, MPC180, to reduce the computation burden of main Processor (MPC860) on the board. By using crypto co-processor, the computation efficiency in case prime field is improved more between 90 and 100 times than the software library and between 20 and 90 times in case binary field. Our result is expect to apply for SSL acceleration board.

  • PDF

Design of Fast Elliptic Curve Crypto module for Mobile Hand Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.177-181
    • /
    • 2008
  • The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a second. The operating frequency used in simulation is about 66MHz and gate counts are approximately 229,284.

Design and FPGA Implementation of the Scalar Multiplier for a CryptoProcessor based on ECC(Elliptic Curve Cryptographics) (ECC(Elliptic Curve Crptographics) 기반의 보안프로세서를 위한 스칼라 곱셈기의 FPGA 구현)

  • Choi, Seon-Jun;Hwang, Jeong-Tae;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1071-1074
    • /
    • 2005
  • The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field $GF(2^{163})$. And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU(Agent 2000). If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35\;{\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital information home system.

  • PDF

Design of Programmable and Configurable Elliptic Curve Cryptosystem Coprocessor (재구성 가능한 타원 곡선 암호화 프로세서 설계)

  • Lee Jee-Myong;Lee Chanho;Kwon Woo-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.67-74
    • /
    • 2005
  • Crypto-systems have difficulties in designing hardware due to the various standards. We propose a programmable and configurable architecture for cryptography coprocessors to accommodate various crypto-systems. The proposed architecture has a 32 bit I/O interface and internal bus width, and consists of a programmable finite field arithmetic unit, an input/output unit, a register file, and a control unit. The crypto-system is determined by the micro-codes in memory of the control unit, and is configured by programming the micro-codes. The coprocessor has a modular structure so that the arithmetic unit can be replaced if a substitute has an appropriate 32 bit I/O interface. It can be used in many crypto-systems by re-programming the micro-codes for corresponding crypto-system or by replacing operation units. We implement an elliptic curve crypto-processor using the proposed architecture and compare it with other crypto-processors

Design and FPGA Implementation of Scalar Multiplication for A CryptoProcessor based on ECC(Elliptic Curve Cryptographics) (ECC(Elliptic Curve Crptographics) 기반의 암호프로세서를 위한 스칼라 곱셈기의 FPGA 구현)

  • Hwang Jeong-Tae;Kim Young-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.529-532
    • /
    • 2004
  • The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field GF($2^{163}$). And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU. If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35 {\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital doorphone.

  • PDF

System Level Design of a Reconfigurable Server Farm of 193-bit Elliptic Curve Crypto Engines (재구성 가능한 193비트 타원곡선 암호연산 서버 팜의 시스템 레벨 설계)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.656-658
    • /
    • 2013
  • Due to increasing demand of new technology, the complexity of hardware and software consisting embedded systems is rapidly growing. Consequently, it is getting hard to design complex devices only with traditional methodology. In this contribution, I introduce a new approach of designing complex hardware with SystemVerilog. I adopted the idea of object oriented implementation of the SystemVerilog to the design of an elliptic curve crypto-engine server farm. I successfully implemented the whole system including the test bench in one integrated environment, otherwise in the traditional way it would have cost Verilog simulation and C/SystemC verification which means much more time and effort.

  • PDF

Design of a Elliptic Curve Crypto-Processor for Hand-Held Devices (휴대 단말기용 타원곡선 암호 프로세서의 설계)

  • Lee, Wan-Bok;Kim, Jung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.728-736
    • /
    • 2007
  • The more improved the Internet and the information technology, the stronger cryptographic system is required which can satisfy the information security on the platform of personal hand-held devices or smart card system. This paper introduces a case study of designing an elliptic curve cryptographic processor of a high performance that can be suitably used in a wireless communicating device or in an embedded system. To design an efficient cryptographic system, we first analyzed the operation hierarchy of the elliptic curve cryptographic system and then implemented the system by adopting a serial cell multiplier and modified Euclid divider. Simulation result shows that the system was correctly designed and it can compute thousands of operations per a secdond.

An Efficient Certificate Revocation Mechanism Using Elliptic Curve Crypto-system (타원곡선 암호를 이용한 효율적인 인증서 폐지 메커니즘)

  • 윤이중;한재우;한대완;류재철
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.6
    • /
    • pp.3-14
    • /
    • 2001
  • CRLs are the most common way to handle certificate revocation. But, They have several problems. Since the validity period of certificates is long and the number of users it immense, CRLs can grow extremely long. Therefore, a great amount of data needs to be transmitted. Moreover, CRLs cannot provide immediate revocation. In this paper, we propose a new certificate revocation mechanism using mECC and Weil pairing in elliptic curve crypto-system. Our certificate revocation mechanism simplifies the process of certificate revocation and provides the immediate revocation.

Fast Video Data Encryption for Swarm UAVs Using Hybrid Crypto-system (하이브리드 암호시스템을 이용한 군집 영상의 고속 암호화)

  • Cho, Seong-Won;Kim, Jun-Hyeong;Chae, Yeo-Gyeong;Joung, Yu-Min;Park, Tae-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.602-609
    • /
    • 2018
  • This paper proposes the hybrid crypto-system for fast video data encryption of UAV(Unmanned Aerial Vehicle) under the LTE(Long-Term Evolution) wireless communication environment. This hybrid crypto-system is consisted of ECC(Elliptic Curve Cryptography) public key algorithm and LEA(Light-weight Encryption Algorithm) symmetric key algorithm. ECC is a faster public key algorithm with the same security strength than RSA(Rivest Shamir Adleman), and Korean standard LEA with the same key size is also a faster symmetric key algorithm than AES(Advances Encryption Standard). We have implemented this hybrid crypto-system using OpenSSL, OpenCV and Socket programs under the Swarm 8-UAV. We have shown the efficient adaptability of this hybrid crypto-system for the real-time swarm UAV through the experiments under the LTE communication environment.

A Security SoC supporting ECC based Public-Key Security Protocols (ECC 기반의 공개키 보안 프로토콜을 지원하는 보안 SoC)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1470-1476
    • /
    • 2020
  • This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.