• 제목/요약/키워드: elevation angle

검색결과 346건 처리시간 0.023초

GPS 신호의 대류층 지연 예측을 위한 보정모델의 비교 (A Comparison of Correction Models for the Prediction of Tropospheric Propagation Delay of GPS Signals)

  • 이용창
    • 한국측량학회지
    • /
    • 제20권3호
    • /
    • pp.283-291
    • /
    • 2002
  • GPS의 SA 해제 이후, 상대적으로 비중이 작았던 대기층지연, 다중경로(Multipath) 등 모델링 연구를 통하여 측위 정확도를 보다 향상시킬 수 있는 오차요인의 보정에 관심이 모아지고 있다. 본 연구는 Goad&Goodman, A&K, Hopfield 및 Sasstamoinen 보정모델에 의한 대류층 지연량의 예측은 물론 천정방향의 지연량에 Niell, Chao 및 Marini 맵핑 함수를 적용한 조합 프로그램을 작성하여 기상센서가 운용되는 특정 관측소의 기상자료를 적용하고 GPS 위성의 고도 변화에 따른 대류층 신호 지연량의 변화와 보정모델 및 맵핑 함수의 조합에 따른 지연량의 변화 양상을 비교.고찰한 것으로 특히, 고도각이 $10^{\circ}$ 이하인 저고도 GPS관측자료의 대류층 지연보정시, 천정방향 보정모델과 맵핑 함수의 조합 및 맵핑 함수의 특성 등을 고려하여 보정함이 타당할 것으로 사료되었다.

GIS 기법 및 발생자료 분석을 이용한 산사태 위험지도 작성 (Preparation of Landslide Hazard Map Using the Analysis of Historical Data and GIS Method)

  • 윤홍식;이동하;서용철
    • 한국지리정보학회지
    • /
    • 제12권4호
    • /
    • pp.59-73
    • /
    • 2009
  • 본 연구에서는 국내 산사태 발생이력 자료을 기반으로 GIS 기법을 적용하여 산사태 위험도 분석을 수행하였다. 이를 위해 한국도로공사에서 조사한 3년 동안의 총 596개 산사태 발생이력 자료와 산사태 발생요인 정보(기상정보, 지형정보, 토질정보)를 기초로 산사태 발생과 발생요인 간의 통계적 분석을 수행하여 상관관계를 산출하였다. 그 후 산출된 상관관계 토대로 총 6개의 래스터 래이어에 대한 가중치 및 위험도 인덱스를 도출하고, 최종적으로는 가중치를 적용한 래스터 계산기법을 통해 산사태 위험지도를 작성하였다. 본 연구의 적용 결과 산사태 위험도 산출을 위해 GIS 기법을 적용할 경우, 산사태 위험지도 작성을 위한 다양한 발생요인의 통합과 분석을 보다 손쉽고, 효율적으로 수행할 수 있을 것으로 판단되었다.

  • PDF

국내 1.5 km CAPPI 자료 보완을 위한 Gap Filler Radar의 효용성 평가 (Evaluation of the Gap Filler Radar as an Implementation of the 1.5 km CAPPI Data in Korea)

  • 유철상;윤정수;김정호;노용훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.521-521
    • /
    • 2015
  • This study evaluated the gap filler radar as an implementation of the 1.5 km CAPPI data in Korea. The use of the 1.5 km CAPPI data was an inevitable choice, given the topography of the Korean Peninsula and the location of the radar. However, there still exists a significant portion of beam blockage, and thus there has been debate about the need to introduce the gap filler radar (or, the gap-filler). This study evaluated the possible benefits of introducing gap-fillers over the Korean Peninsula. As a first step, the error of the radar data was quantified by the G/R ratio and RMSE, and the radar data over the Korean Peninsula were evaluated. Then, the gap-fillers were located where the error was high, whose effect was then evaluated by the decrease in the G/R ratio and RMSE. The results show that the mean values of the G/R ratio and RMSE of the 1.5 m CAPPI data over the Korean Peninsula were estimated to be about 2.5 and 4.5 mm/hr, respectively. Even after the mean-field bias correction, the RMSE of the 1.5 km CAPPI data has not decreased much to be remained very high around 4.4 mm/hr. Unfortunately, the effect of the gap-filler on the 1.5 CAPPI data was also found very small, just 1 - 2%. However, the gap-filler could be beneficial, if the lowest elevation angle data were used instead of the 1.5 km CAPPI data. The effect of five gap-fillers could be up to 7% decrease in RMSE.

  • PDF

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Relationship between Thoracic Kyphosis and Selected Cardiopulmonary Parameters and Respiratory Symptoms of Patients with Chronic Obstructive Pulmonary Disease and Asthma

  • Aweto, Happiness Anulika;Adodo, Rachel Ilojegbe
    • The Journal of Korean Physical Therapy
    • /
    • 제33권4호
    • /
    • pp.179-186
    • /
    • 2021
  • Background: Patients with advanced asthma and chronic obstructive pulmonary disease (COPD) have postural deviations such as thoracic hyperkyphosis, forward shoulder posture (FSP) due to an increase in head and cervical protraction, reduced shoulder range of motion and a corresponding increase in scapula elevation and upward rotation. Unlike congenital vertebral kyphosis that are permanent and rigid deformities with bony and other structural deformations which cause respiratory impairment, these deformities in these patients may be more flexible. Since the thoracic hyperkyphosis has been implicated as having adverse health consequences it is necessary to evaluated the relationship between thoracic kyphosis and cardiopulmonary functions of patients with COPD and asthma. Methods: It was a cross-sectional analytical study. Eighty-four eligible patients with COPD and asthma were recruited from the Respiratory Unit, Department of Medicine, Lagos University Teaching Hospital (LUTH), and basic anthropometric parameters, pulmonary parameters, cardiovascular parameters, thoracic kyphosis (Cobb) angle and presence of respiratory symptoms of participants were assessed. Data was analyzed using SPSS version 20. Results: There was no significant correlation between the thoracic kyphosis and selected pulmonary parameters (Forced Expiratory Volume in one second (FEV1, p=0.36), Forced Vital Capacity (FVC, p=0.95), Peak Expiratory Flow Rate (PEFR, p=0.16), Thoracic expansion (TE, p=0.27)/cardiovascular parameters (Systolic Blood Pressure (SBP, p=0.108), Diastolic Blood Pressure (DBP, p=0.17) and Pulse Rate (PR, p=0.93) as well as the respiratory symptoms (SGRQ scores, p=0.11) in all subjects. Conclusion: There was no relationship between thoracic kyphosis and selected pulmonary/cardiovascular parameters as well as respiratory symptoms in patients with COPD and asthma.

펄스길이에 따른 이중편파변수의 민감도 분석 (Sensitivity Analysis of Polarimetric Observations by Two Different Pulse Lengths of Dual-Polarization Weather Radar)

  • 이정은;정성화;김종성;장근일
    • 대기
    • /
    • 제29권2호
    • /
    • pp.197-211
    • /
    • 2019
  • The observational sensitivity of dual-polarization weather radar was quantitatively analyzed by using two different pulse widths. For this purpose, test radar scan strategy which consisted of consecutive radar scan using long (LP: $2{\mu}s$) and short (SP: $1{\mu}s$) pulses at the same elevation angle was employed. The test scan strategy was conducted at three operational S-band dual-polarization radars (KSN, JNI, and GSN) of Korea Meteorological Administration (KMA). First, the minimum detectable reflectivity (MDR) was analyzed as a function of range using large data set of reflectivity ($Z_H$) obtained from JNI and GSN radars. The MDR of LP was as much as 7~22 dB smaller than that of SP. The LP could measure $Z_H$ greater than 0 dBZ within the maximum observational range of 240 km. Secondly, polarimetric observations and the spatial extent of radar echo between two pulses were compared. The cross-polar correlation coefficient (${\rho}_{hv}$) from LP was greater than that from SP at weak reflectivity (0~20 dBZ). The ratio of $Z_H$ (> 0 dBZ) and ${\rho}_{hv}$(> 0.95) bin to total bin calculated from LP were greater than those from SP (maximum 7.1% and 13.2%). Thirdly, the frequency of $Z_H$ (FOR) during three precipitation events was analyzed. The FOR of LP was greater than that of SP, and the difference in FOR between them increased with increasing range. We conclude that the use of LP can enhance the sensitivity of polarimetric observations and is more suitable for detecting weak echoes.

The Effects of Direction Changes on the Muscular Activity of the Lower Extremities During Seated Reaching Exercises

  • Kim, Jwa-Jun;Kim, Dae-Kyung;Kim, Jae-Yong;Shin, Jae-Wook;Park, Se-Yeon
    • PNF and Movement
    • /
    • 제17권2호
    • /
    • pp.207-214
    • /
    • 2019
  • Purpose: Although multi-directional reaching exercises are commonly used clinically, the effects of specific movement directions on the muscle systems of the lower extremities have not been explored. We therefore investigated lower extremity muscle activity during reaching exercises with different sagittal and horizontal plane movements. Methods: The surface electromyography responses of the bilateral rectus femoris, tibialis anterior, peroneus longus, and gastrocnemius muscles were measured during reaching exercises in three directions in the horizontal plane (neutral, $45^{\circ}$ horizontal shoulder adduction, and $45^{\circ}$ abduction) and three directions in the sagittal plane (neutral, $120^{\circ}$ flexion, and $60^{\circ}$ flexion). A total of 20 healthy, physically active participants completed six sets of reaching exercises. Two-way repeated ANOVA was performed: body side (ipsilateral and contralateral) was set as the intra-subject factor and direction of reach as the inter-subject factor. Results: Reaching at $45^{\circ}$ horizontal shoulder adduction significantly increased the activity of the contralateral rectus femoris and gastrocnemius muscles, while $45^{\circ}$ horizontal shoulder abduction activated the ipsilateral rectus femoris and gastrocnemius muscles. The rectus femoris activity was significantly higher with reaching at a $120^{\circ}$ shoulder flexion compared to the other conditions. The gastrocnemius activity decreased significantly as the shoulder elevation angle increased from $60^{\circ}$ to $120^{\circ}$. Conclusion: Our results suggest that multi-directional reaching stimulates the lower extremity muscles depending on the movement direction. The muscles acting on two different joints responded to the changes in reaching direction, whereas the muscles acting on one joint were not activated with changes in reaching direction.

수중 입체촬영을 위한 수면호버링 드론 설계 (Design of Water Surface Hovering Drone for Underwater Stereo Photography)

  • 김형균;김용호
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.7-12
    • /
    • 2019
  • 수중촬영을 위해서는 촬영자가 장비를 갖추고 수중으로 진입하여 촬영해야 한다. 촬영자가 직접 수중에 진입하기 때문에 수중에 존재하는 다양한 장애물이나 깊은 수심으로 인해 안전사고가 빈번하게 발생하고 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 수중 입체촬영을 위한 수면호버링 드론에 대해 제안하였다. 레이저 센서를 이용한 수위측정을 통해 드론이 일정 높이의 수면에서 호버링한 상태에서 촬영부만 수중으로 이동시켜 수중상태를 입체로 촬영하는 최적의 기법에 대해 기술하였다. 제안한 수중 입체촬영기법은 수중촬영에 드론을 사용함으로써 촬영자가 직접 수중으로 진입하지 않아도 되기 때문에 안전사고에 대한 문제점을 해결할 수 있으며 저비용으로 수중입체영상을 획득할 수 있는 장점을 갖고 있다. 입체촬영용으로 제안한 캠의 촬영각을 분석하여 적정한 입체영상의 시청이 가능한 조건을 수중 18cm높이에서 바닥면 거리가 41.4cm 일 때로 규정하고 수면호버링 드론의 엘리베이션 체인에 의해 하강하는 촬영부의 높이를 조정하도록 제안하였다.

Cryptotia recurrence lowering technique with additional acellular dermal matrix graft

  • Lee, Dongeun;Kim, Young Seok;Roh, Tai Suk;Yun, In Sik
    • 대한두개안면성형외과학회지
    • /
    • 제20권3호
    • /
    • pp.170-175
    • /
    • 2019
  • Background: Cryptotia is a congenital anomaly in which the upper part of the retroauricular sulcus is absent and buried underneath the temporal skin. Various surgical techniques have been reported for the correction of cryptotia following Kubo's V-Y plasty in 1933. Conventional methods using a local skin flap, skin grafting, tissue expansion, Z-plasty, and any of these combined approaches can result in skin deficiency of the upper auricle. The aim of this study was to develop a new method that improves cosmetic results and has fewer complications. Methods: This study involved four patients in whom five cryptotia deformities were corrected using V-Y plasty and Z-plasty. After elevation of the flap, acellular dermal matrix (ADM; MegaDerm) that was over 5 mm in thickness was applied to the cephalo-auricular angle and positioned to enhance the projection of the ear. Lastly, the flap was transposed to complete the repair. Results: Between January 2014 and February 2018, cryptotia correction with ADM graft was performed in four patients. None of the patients developed a recurrence of cryptotia, and there were no postoperative complications such as wound infection, seroma formation, and dehiscence. In addition, the procedures resulted in a favorable cosmetic appearance. Conclusion: Based on these findings, i.e., no recurrence and a favorable cosmetic result, when using an ADM graft, it is suggested that this technique could be an alternative method of cryptotia correction. It could also lessen donor-site morbidity when compared to autologous cartilage grafting and be more cost-effective than using cartilage from a cadaver.

다이파 소노부이를 활용한 수중표적 심도 추정 (Depth estimation of an underwater target using DIFAR sonobuoy)

  • 이영구
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.302-307
    • /
    • 2019
  • 현대 대잠전에 있어 잠수함에 대한 2차원 위치추정에 다양한 방법들이 있다. 잠수함에 대한 보다 효과적인 추적 및 공격을 위해 표적 심도는 매우 중요한 요소이다. 하지만 현재까지도 잠수함의 심도를 찾아낸다는 것은 어려운 일이다. 본 논문에서는 최단접근점(Closest Point of Approach, CPA) 전후의 표적 접촉방위와 표적 도플러 신호 등 다이파 소노부이 접촉정보를 이용한 잠수함 심도 추정 기법을 제안하고자 한다. 표적의 상대심도는 표적과 다이파 소노부이의 청음기 간 사선거리 및 수평거리에 피타고라스 정리를 적용하여 결정된다. 이때 사선거리는 도플러변이와 표적 속도에 의해서 계산되며, 수평거리는 표적에 대한 연속된 접촉방위와 표적의 이동거리에 삼각함수를 적용하여 얻을 수 있다. 본 논문에서 제시된 알고리즘의 성능은 소노부이-표적 간 수평거리 및 상대심도에 의해 결정되는 고각과 도플러 변이 값의 측정 정확성에 의해 좌우됨을 시뮬레이션을 통해 알 수 있다.