• Title/Summary/Keyword: element load method

Search Result 2,585, Processing Time 0.03 seconds

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

A Study on the Bending Analysis of Rectangular Plates by Substructuring Technique (분할구조기법을 이용한 장방형판의 휨해석에 관한 연구)

  • 오숙경;김성용;김일중;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.65-72
    • /
    • 1997
  • This study is the bending analysis of rectangular plates with 4-sides simply supported by Finite Element Method using substructuring technique. In finite element method, as the more number of finite element, the more dimension of matrix, it is difficult to obtain accuracy solution. In this paper substructuring technique is applied to finite element method in order to reduce the dimension of matrix according to the number of finite element mesh. To validate finite element method using substructuring technique, deflections and moments of rectangular plates by that method is compared with those of references. Considering the symmetry of the plate and load, one fourth of plate is analyzed. Operating time and the error of solutions according to the number of finite element mesh and substructure are compared with each other.

  • PDF

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.

Analysis of PSC Beam Bridges Strengthened by External Post-Tensioning Method (외부 후긴장된 PSC보 교량의 해석방법)

  • 김광수;박선규;김형열;전찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.399-404
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity partilly prestressed concrete beam bridges. Based on the finite element method of analysis, shell and frame elements are utilized to model the slab and beams of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab and mid-plane of beam. This paper also includes the comparision of three different equations that used in the calculation of effective moment of inertia for the partially prestressed concrete beams. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. Agreement with the numerical solutions by using the proposed method and load test results is generally excellent.

  • PDF

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

A study on improving efficiency in computational procedure of finite element nonlinear analysis of plane frame structures (평면 프레임 구조물의 유한요소 비선형 해석을 위한 효율적인 수치해석 방법에 관한 연구)

  • 구정서;이병채;곽병만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.631-641
    • /
    • 1988
  • Computational procedures associated with finite element nonlinear analysis of plane frame structures were examined and new solution schemes were suggested. Element stiffness matrix was derived from the principle of virtual displacements. Geometric and material nonlinearities were considered in the formulation. Solution method was based upon the constant displacement length method in conjunction with the Newton-Raphson method. New solution schemes were introduced in determining the initial load increment and the sign of load increments and predicting the length of displacement increment to improve user convenience, efficiency and stability. Numerical experiments were performed for several typical problems and suggested schemes were found efficient and convenient for analyzing nonlinear frame structures.

Buckling Analysis of Axisymmetric Shells by Incremental Finite Element Mothod (증분형(增分形) 유한요소법(有限要素法)에 의한 축대칭(軸對稱) Shell구조(構造)의 좌굴해석(挫屈解析))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • This paper deals whth the buckling as well as postbuckling analysis of axisymmertric shells taking the initial deflection effects into account. Incremental equilibrium equations, based on the principle of virtual work, were derived by the finite element method, the successive step-by-step Newton-Raphson iterative technique was adopted. To define the transition pattern of postbuckling behavior from the prebuckling state more accurately, a simple solution method was developed, i.e. the critical load was calculated by the load extrapolation method with the determinant of tangent stiffness matrix and the equilibrium configuration in the immediate postbuckling stage was obtained by perturbation scheme and eigenvalue analysis. Degenerated isoparametric shell elements were used to analyse the axisymmetric shell of revolution. And by the method developed in this paper, the computer program applicable to the nonlinear analysis of both thin and moderately thick shells was constructed. To verify the capabilities and accuracies of the present solution method, the computed results were compared with the results of analytical solutions. These results coincided fairly well in both the small deflection and large deflection ranges. Various numerical analyses were done to show the effect of initial deflection and shape of shells on buckling load and postbuckling behavior. Futhermore, corrected directions of applied loads at every increment steps were used to determine the actual effects of large deflection in non-conservative load systems such as hydrostatic pressure load. The following conclusions can be obtained. (1) The method described in this paper was found to be both economic and effective in calculating buckling load and postbuckling behavior of shell structure. (2) Buckling and postbuckling behavior of spherical caps is critically dependent upon their geometric configuration, i.e. the shape of spherical cap and quantities of the initial deflection. (3) In the analysis of large deflection problems of shells by the incremental method, corrections of the applied load directions are needed at every incremental step to compensate the follower force effects.

  • PDF

Finite Element Analysis in Finite Length Bar under Constant Amplitude Loading (일정진폭하중을 받는 유한 길이 봉의 유한요소해석)

  • Hwang, Eun-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.525-533
    • /
    • 2010
  • Direct time integration method such as Newmark method is numerically performed under the assumption that continuous load function such as constant amplitude load can be treated as a discontinuous load fuction. It is due that the load can be treated as a constant value at the given time period regardless of variation of load at the time increment interval. It means the numerical results should be accompanied by the error due to approximation of load fuction. In contrast, the load function is calculated by convolution integral for the given time interval at finite element equation based on Gurtin's variation equation. Therefore. precise numerical results can be obtained by Gurtin's method because of convolution integral for the continuous load fuction curve even at the variation of load function in the given time interval. In this study, we prove that Gurtin's method can be more suitable than Newmark method in the problem of constant amplitude loading, using the numerical results for the free end of the one-dimensional rod. This study also shows that Gurtin's method is more effective in constant amplitude loading than in constant loading. The accuracy and the validity are verified by comparison between the results of in-house FORTRAN code and ADINA, a commercial software supporting Newmark method.

Behavior of piled rafts overlying a tunnel in sandy soil

  • Al-Omari, Raid R.;Al-Azzawi, Adel A.;AlAbbas, Kadhim A.
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.599-615
    • /
    • 2016
  • The present research presents experimental and finite element studies to investigate the behavior of piled raft-tunnel system in a sandy soil. In the experimental work, a small scale model was tested in a sand box with load applied vertically to the raft through a hydraulic jack. Five configurations of piles were tested in the laboratory. The effects of pile length (L), number of piles in the group and the clearance distance between pile tip and top of tunnel surface (H) on the load carrying capacity of the piled raft-tunnel system are investigated. The load sharing percent between piles and rafts are included in the load-settlement presentation. The experimental work on piled raft-tunnel system yielded that all piles in the group carry the same fraction of load. The load carrying capacity of the piled raft-tunnel model was increased with increasing (L) for variable (H) distances and decreased with increasing (H) for constant pile lengths. The total load carrying capacity of the piled raft-tunnel model decreases with decreasing number of piles in the group. The total load carrying capacity of the piles relative to the total applied load (piles share) increases with increasing (L) and the number of piles in the group. The increase in (L/H) ratio for variable (H) distance and number of piles leads to an increase in piles share. ANSYS finite element program is used to model and analyze the piled raft-tunnel system. A three dimensional analysis with elastoplastic soil model is carried out. The obtained results revealed that the finite element method and the experimental modeling are rationally agreed.